Hu Po, Chen Wei, Wang Yang, Chen Tao, Qian Xiaohu, Li Wenqi, Chen Jiaoyang, Fu Jiajun
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
ACS Nano. 2023 Aug 22;17(16):16239-16251. doi: 10.1021/acsnano.3c06171. Epub 2023 Aug 3.
The heterogeneity and continuous cracking of the static solid electrolyte interphase (SEI) are one of the most critical barriers that largely limit the cycle life of lithium (Li) metal batteries. Herein, we report a fatigue-free dynamic supramolecular ion-conductive elastomeric interphase (DSIEI) for a highly efficient and dendrite-free lithium metal anode. The soft phase poly(propylene glycol) backbone with loosely Li-O coordinating interaction was responsible for fast ion transport. Simultaneously, the supramolecular quadruple hydrogen bonds (H-bonds) in the hard phases endow the elastomeric interphase with mechanical enhancement, while gradient H-bonds can dissipate strain energy via the sequential bonding cleavage. Such a design affords superior mechanical robustness, high ionic conductivity, gradient energy dissipation, and high Li transference number. Besides, anion enrichment in DSIEI assists in situ construction of a lithium fluoride-rich inner layer upon cycling. The resultant biomimetic bilayer structure enables the symmetric cells with superior cyclability of over 600 h at a high current density of 10 mA cm. Moreover, the DSIEI allows stable operation of the full cells under constrained conditions of limited lithium excess, a high-loading LiNiCoMnO cathode, and a low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for deigning artificial SEI and achieving high-energy-density Li metal batteries.
固态电解质界面(SEI)的不均匀性和持续破裂是严重限制锂金属电池循环寿命的关键障碍之一。在此,我们报道了一种用于高效且无枝晶锂金属负极的无疲劳动态超分子离子导电弹性体界面(DSIEI)。具有松散Li-O配位相互作用的软相聚丙二醇主链负责快速离子传输。同时,硬相中的超分子四重氢键赋予弹性体界面机械增强性能,而梯度氢键可通过顺序键断裂耗散应变能。这种设计提供了卓越的机械稳健性、高离子导电性、梯度能量耗散和高锂迁移数。此外,DSIEI中的阴离子富集有助于在循环过程中原位构建富含氟化锂的内层。由此产生的仿生双层结构使对称电池在10 mA cm的高电流密度下具有超过600小时的优异循环稳定性。此外,DSIEI允许全电池在锂过量有限、高负载LiNiCoMnO正极和低负/正容量(N/P)比的受限条件下稳定运行。这项工作为设计人工SEI和实现高能量密度锂金属电池提供了有力策略。