文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发人工智能模型,从日本电子健康记录中提取肿瘤学结局。

Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records.

机构信息

Patient Advocacy Center, University of Miyazaki Hospital, Miyazaki, Japan.

Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan.

出版信息

Adv Ther. 2023 Mar;40(3):934-950. doi: 10.1007/s12325-022-02397-7. Epub 2022 Dec 22.


DOI:10.1007/s12325-022-02397-7
PMID:36547809
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9988800/
Abstract

INTRODUCTION: A framework that extracts oncological outcomes from large-scale databases using artificial intelligence (AI) is not well established. Thus, we aimed to develop AI models to extract outcomes in patients with lung cancer using unstructured text data from electronic health records of multiple hospitals. METHODS: We constructed AI models (Bidirectional Encoder Representations from Transformers [BERT], Naïve Bayes, and Longformer) for tumor evaluation using the University of Miyazaki Hospital (UMH) database. This data included both structured and unstructured data from progress notes, radiology reports, and discharge summaries. The BERT model was applied to the Life Data Initiative (LDI) data set of six hospitals. Study outcomes included the performance of AI models and time to progression of disease (TTP) for each line of treatment based on the treatment response extracted by AI models. RESULTS: For the UMH data set, the BERT model exhibited higher precision accuracy compared to the Naïve Bayes or the Longformer models, respectively (precision [0.42 vs. 0.47 or 0.22], recall [0.63 vs. 0.46 or 0.33] and F1 scores [0.50 vs. 0.46 or 0.27]). When this BERT model was applied to LDI data, prediction accuracy remained quite similar. The Kaplan-Meier plots of TTP (months) showed similar trends for the first (median 14.9 [95% confidence interval 11.5, 21.1] and 16.8 [12.6, 21.8]), the second (7.8 [6.7, 10.7] and 7.8 [6.7, 10.7]), and the later lines of treatment for the predicted data by the BERT model and the manually curated data. CONCLUSION: We developed AI models to extract treatment responses in patients with lung cancer using a large EHR database; however, the model requires further improvement.

摘要

简介:利用人工智能(AI)从大规模数据库中提取肿瘤学结果的框架尚未建立。因此,我们旨在开发 AI 模型,以使用来自多家医院电子健康记录的非结构化文本数据提取肺癌患者的结果。

方法:我们使用宫崎大学医院(UMH)数据库构建了用于肿瘤评估的 AI 模型(双向编码器表示来自转换器[BERT]、朴素贝叶斯和 Longformer)。该数据包括来自进度记录、放射学报告和出院总结的结构化和非结构化数据。BERT 模型应用于六个医院的 Life Data Initiative(LDI)数据集。研究结果包括 AI 模型的性能和基于 AI 模型提取的治疗反应的每一线治疗的疾病进展时间(TTP)。

结果:对于 UMH 数据集,BERT 模型的精度准确性高于朴素贝叶斯或 Longformer 模型(精度[0.42 与 0.47 或 0.22],召回率[0.63 与 0.46 或 0.33]和 F1 分数[0.50 与 0.46 或 0.27])。当将此 BERT 模型应用于 LDI 数据时,预测准确性仍然相当相似。TTP(月)的 Kaplan-Meier 图显示了 BERT 模型预测数据和手动策管数据的第一(中位数 14.9 [95%置信区间 11.5, 21.1] 和 16.8 [12.6, 21.8])、第二(7.8 [6.7, 10.7] 和 7.8 [6.7, 10.7])和后续治疗线的相似趋势。

结论:我们开发了 AI 模型,以使用大型电子健康记录数据库提取肺癌患者的治疗反应;然而,该模型需要进一步改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/f8118ff7960f/12325_2022_2397_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/8d154d1ed2e9/12325_2022_2397_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/7c9fa3031fa1/12325_2022_2397_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/f8118ff7960f/12325_2022_2397_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/8d154d1ed2e9/12325_2022_2397_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/7c9fa3031fa1/12325_2022_2397_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa1/9988800/f8118ff7960f/12325_2022_2397_Fig3_HTML.jpg

相似文献

[1]
Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records.

Adv Ther. 2023-3

[2]
Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging.

AJR Am J Roentgenol. 2023-9

[3]
A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.

J Med Internet Res. 2023-10-4

[4]
Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.

J Biomed Inform. 2022-3

[5]
Vaccine sentiment analysis using BERT + NBSVM and geo-spatial approaches.

J Supercomput. 2023-5-7

[6]
Identification of asthma control factor in clinical notes using a hybrid deep learning model.

BMC Med Inform Decis Mak. 2021-11-9

[7]
A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.

BMC Med Res Methodol. 2022-7-2

[8]
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.

NPJ Digit Med. 2021-5-20

[9]
Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).

BMC Med Inform Decis Mak. 2022-7-30

[10]
Modified Bidirectional Encoder Representations From Transformers Extractive Summarization Model for Hospital Information Systems Based on Character-Level Tokens (AlphaBERT): Development and Performance Evaluation.

JMIR Med Inform. 2020-4-29

引用本文的文献

[1]
Deep Learning Model for Natural Language to Assess Effectiveness of Patients With Non-Muscle Invasive Bladder Cancer Receiving Intravesical Bacillus Calmette-Guérin Therapy.

JCO Clin Cancer Inform. 2025-6

[2]
A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer.

Cancers (Basel). 2025-3-4

[3]
A series of natural language processing for predicting tumor response evaluation and survival curve from electronic health records.

BMC Med Inform Decis Mak. 2025-2-17

[4]
Machine Learning Algorithms for the Diagnosis of Class III Malocclusions in Children.

Children (Basel). 2024-6-24

[5]
Using natural language processing to analyze unstructured patient-reported outcomes data derived from electronic health records for cancer populations: a systematic review.

Expert Rev Pharmacoecon Outcomes Res. 2024-4

[6]
Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements.

Diagnostics (Basel). 2023-6-21

[7]
An overview and a roadmap for artificial intelligence in hematology and oncology.

J Cancer Res Clin Oncol. 2023-8

本文引用的文献

[1]
Privacy Protection and Secondary Use of Health Data: Strategies and Methods.

Biomed Res Int. 2021

[2]
Progress in the Application of Machine Learning Algorithms to Cancer Research and Care.

JAMA Netw Open. 2021-7-1

[3]
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer.

JAMA Netw Open. 2021-7-1

[4]
Real-world evidence and product development: Opportunities, challenges and risk mitigation.

Wien Klin Wochenschr. 2021-8

[5]
Deep Learning to Estimate RECIST in Patients with NSCLC Treated with PD-1 Blockade.

Cancer Discov. 2021-1

[6]
Artificial intelligence in gastric cancer: a systematic review.

J Cancer Res Clin Oncol. 2020-7-1

[7]
Efficient and Accurate Extracting of Unstructured EHRs on Cancer Therapy Responses for the Development of RECIST Natural Language Processing Tools: Part I, the Corpus.

JCO Clin Cancer Inform. 2020-5

[8]
Feasibility of Using Real-World Data to Replicate Clinical Trial Evidence.

JAMA Netw Open. 2019-10-2

[9]
Assessment of Deep Natural Language Processing in Ascertaining Oncologic Outcomes From Radiology Reports.

JAMA Oncol. 2019-10-1

[10]
Generating Real-World Tumor Burden Endpoints from Electronic Health Record Data: Comparison of RECIST, Radiology-Anchored, and Clinician-Anchored Approaches for Abstracting Real-World Progression in Non-Small Cell Lung Cancer.

Adv Ther. 2019-5-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索