Suppr超能文献

用于分布式 EEG 监测的具有通道内增强共模抑制比的 0.67 μV-IIRN 超-T Ω-Z 17.5 μW/Ch 有源电极

A 0.67 μV-IIRN super-T Ω-Z 17.5 μW/Ch Active Electrode With In-Channel Boosted CMRR for Distributed EEG Monitoring.

出版信息

IEEE Trans Biomed Circuits Syst. 2024 Feb;18(1):3-15. doi: 10.1109/TBCAS.2023.3301554. Epub 2024 Jan 26.

Abstract

We present the design, development, and experimental characterization of an active electrode (AE) IC for wearable ambulatory EEG recording. The proposed architecture features in-AE double common-mode (CM) rejection, making the recording's CMRR independent of typically-significant AE-to-AE gain variations. Thanks to being DC coupled and needless of chopper stabilization for flicker noise suppression, the architecture yields a super-T Ω input impedance. Such a large input impedance makes the AE's CMRR practically immune to electrode-skin interface impedance variations across different recording channels, a critical feature for dry-electrode ambulatory systems. Signal quantization and serialization are also performed in-AE, which enables a distributed system in which all AEs use a single data bus for data/command communication to the backend module, thus significantly improving the system's scalability. Additionally, the presented AE hosts auxiliary modules for (i) detection of an unstable electrode-skin connection through continuous interface impedance monitoring, (ii) dynamic measurement and adjustment of input DC level, and (iii) a CM feedback loop for further CMRR enhancement. The article also presents the development of printed (extrusion) tattoo electrodes and their experimental characterization results with the proposed AE architecture. Besides bio-compatibility, low-cost, pattern flexibility, and quick fabrication process, the printed electrodes offer a very stable electrode-skin connection, conform to scalp shape, and exhibit consistent performance under various bending curvatures. Analog circuit blocks of the presented AE architecture are designed and fabricated using a standard 180 nm CMOS technology, and the [Formula: see text] IC is integrated with off-chip low-power digital modules on a PCB to form the AE. Our measurement results show a CMRR of 82.2 dB (at 60 Hz), amplification voltage gain of 52.8 dB, a bandwidth of 0.2-400 Hz, ±500 mV input DC offset tolerance, An input impedance [Formula: see text], and 0.67 μV integrated input referred noise (0.5-100 Hz), while consuming 17.5 μW per channel. All auxiliary modules are tested experimentally, and the entire system is validated in-vivo, for both ECG and EEG recording.

摘要

我们提出了一种用于可穿戴式动态脑电图记录的有源电极(AE)集成电路的设计、开发和实验特性。所提出的架构具有内置 AE 双共模(CM)抑制功能,使记录的 CMRR 不受通常显著的 AE 到 AE 增益变化的影响。由于采用直流耦合,且无需斩波稳定以抑制闪烁噪声,因此该架构具有超 TΩ输入阻抗。如此大的输入阻抗使得 AE 的 CMRR 实际上不受不同记录通道中电极-皮肤接口阻抗变化的影响,这是干式电极动态系统的关键特性。信号量化和序列化也是在 AE 中进行的,这使得可以实现分布式系统,其中所有 AE 都使用单个数据总线进行数据/命令通信到后端模块,从而显著提高了系统的可扩展性。此外,所提出的 AE 还具有辅助模块,用于 (i) 通过连续接口阻抗监测检测不稳定的电极-皮肤连接,(ii) 动态测量和调整输入直流电平,以及 (iii) 用于进一步提高 CMRR 的 CM 反馈回路。本文还介绍了印刷(挤压)纹身电极的开发及其与所提出的 AE 架构的实验特性。除了生物兼容性、低成本、图案灵活性和快速制造工艺外,印刷电极还提供了非常稳定的电极-皮肤连接,顺应头皮形状,并在各种弯曲曲率下表现出一致的性能。所提出的 AE 架构的模拟电路模块采用标准的 180nm CMOS 技术进行设计和制造,并且 [Formula: see text] IC 与 PCB 上的外部低功耗数字模块集成在一起,形成 AE。我们的测量结果显示,CMRR 为 82.2 dB(在 60 Hz 时),放大电压增益为 52.8 dB,带宽为 0.2-400 Hz,±500 mV 输入直流偏移容限,输入阻抗 [Formula: see text],以及 0.67 μV 集成输入参考噪声(0.5-100 Hz),同时每个通道消耗 17.5 μW。所有辅助模块都经过了实验测试,整个系统在体内进行了 ECG 和 EEG 记录的验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验