IEEE Trans Biomed Circuits Syst. 2021 Jun;15(3):402-411. doi: 10.1109/TBCAS.2021.3080398. Epub 2021 Aug 12.
Modern neuromodulation systems typically provide a large number of recording and stimulation channels, which reduces the available power and area budget per channel. To maintain the necessary input-referred noise performance despite growingly rigorous area constraints, chopped neural front-ends are often the modality of choice, as chopper-stabilization allows to simultaneously improve (1/f) noise and area consumption. The resulting issue of a drastically reduced input impedance has been addressed in prior art by impedance boosters based on voltage buffers at the input. These buffers precharge the large input capacitors, reduce the charge drawn from the electrodes and effectively boost the input impedance. Offset on these buffers directly translates into charge-transfer to the electrodes, which can accelerate electrode aging. To tackle this issue, a voltage buffer with ultra-low time-averaged offset is proposed, which cancels offset by periodic reconfiguration, thereby minimizing unintended charge transfer. This article explains the background and circuit design in detail and presents measurement results of a prototype implemented in a 180 nm HV CMOS process. The measurements confirm that signal-independent, buffer offset induced charge transfer occurs and can be mitigated by the presented buffer reconfiguration without adversely affecting the operation of the input impedance booster. The presented neural recorder front-end achieves state of the art performance with an area consumption of 0.036 mm, an input referred noise of [Formula: see text] (1 to 200 Hz) and [Formula: see text] (0.2 to 10 kHz), power consumption of 13.7 μW from 1.8 V supply, as well as CMRR and PSRR ≥ 83 dB at 50 Hz.
现代神经调节系统通常提供大量的记录和刺激通道,这会降低每个通道的可用功率和面积预算。为了在不断增加的严格面积限制下保持必要的输入参考噪声性能,斩波神经前端通常是首选模式,因为斩波稳定化允许同时改善(1/f)噪声和面积消耗。在先前的技术中,通过在输入处使用基于电压缓冲器的阻抗升压来解决输入阻抗急剧降低的问题。这些缓冲器对大输入电容器预充电,减少从电极汲取的电荷,并有效地提高输入阻抗。这些缓冲器上的偏移直接转化为向电极的电荷转移,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,该缓冲器通过周期性重新配置来抵消偏移,从而最小化意外的电荷转移。本文详细解释了背景和电路设计,并展示了在 180nmHVCMOS 工艺中实现的原型的测量结果。测量结果证实了信号独立的、由缓冲器偏移引起的电荷转移的发生,并可以通过所提出的缓冲器重新配置来减轻,而不会对输入阻抗升压的操作产生不利影响。所提出的神经记录器前端在 0.036mm 的面积消耗下实现了最先进的性能,输入参考噪声为 [Formula: see text](1 至 200Hz)和 [Formula: see text](0.2 至 10kHz),13.7μW 的功耗来自 1.8V 电源,以及在 50Hz 时 CMRR 和 PSRR≥83dB。