Suppr超能文献

端到端一次性人体解析。

End-to-End One-Shot Human Parsing.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14481-14496. doi: 10.1109/TPAMI.2023.3301672. Epub 2023 Nov 3.

Abstract

Previous human parsing methods are limited to parsing humans into pre-defined classes, which is inflexible for practical fashion applications that often have new fashion item classes. In this paper, we define a novel one-shot human parsing (OSHP) task that requires parsing humans into an open set of classes defined by any test example. During training, only base classes are exposed, which only overlap with part of the test-time classes. To address three main challenges in OSHP, i.e., small sizes, testing bias, and similar parts, we devise an End-to-end One-shot human Parsing Network (EOP-Net). Firstly, an end-to-end human parsing framework is proposed to parse the query image into both coarse-grained and fine-grained human classes, which embeds rich semantic information that is shared across different granularities to identify the small-sized human classes. Then, we gradually smooth the training-time static prototypes to get robust class representations. Moreover, we employ a dynamic objective to encourage the network enhancing features' representational capability in the early training phase while improving features' transferability in the late training phase. Therefore, our method can quickly adapt to the novel classes and mitigate the testing bias issue. In addition, we add a contrastive loss at the prototype level to enforce inter-class distances, thereby discriminating the similar parts. For comprehensive evaluations on the new task, we tailor three existing popular human parsing benchmarks to the OSHP task. Experiments demonstrate that EOP-Net outperforms representative one-shot segmentation models by large margins and serves as a strong baseline for further research.

摘要

先前的人体解析方法仅限于将人体解析为预定义的类别,这对于实际的时尚应用来说是不灵活的,因为这些应用通常会有新的时尚物品类别。在本文中,我们定义了一个新颖的单次人体解析(OSHP)任务,该任务要求将人体解析为一个由任何测试示例定义的开放类别集。在训练过程中,只暴露基本类别,这些基本类别仅与部分测试时类别重叠。为了解决 OSHP 中的三个主要挑战,即小尺寸、测试偏差和相似部分,我们设计了一种端到端单次人体解析网络(EOP-Net)。首先,提出了一种端到端的人体解析框架,将查询图像解析为粗粒度和细粒度的人体类别,嵌入了丰富的语义信息,这些信息在不同的粒度上共享,以识别小尺寸的人体类别。然后,我们逐渐平滑训练时的静态原型,以获得稳健的类别表示。此外,我们采用动态目标来鼓励网络在早期训练阶段增强特征的表示能力,同时在后期训练阶段提高特征的可转移性。因此,我们的方法可以快速适应新类别,并减轻测试偏差问题。此外,我们在原型级别添加了对比损失,以强制类间距离,从而区分相似部分。为了在新任务上进行全面评估,我们将三个现有的人体解析基准专门用于 OSHP 任务。实验表明,EOP-Net 比代表性的单次分割模型有很大的优势,并为进一步的研究提供了一个强有力的基线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验