Wang Yalin, Li Silong, Liu Chenliang, Wang Kai, Yuan Xiaofeng, Yang Chunhua, Gui Weihua
IEEE Trans Cybern. 2024 Feb;54(2):974-987. doi: 10.1109/TCYB.2023.3295852. Epub 2024 Jan 17.
This article studies the performance monitoring problem for the potassium chloride flotation process, which is a critical component of potassium fertilizer processing. To address its froth image segmentation problem, this article proposes a multiscale feature extraction and fusion network (MsFEFNet) to overcome the multiscale and weak edge characteristics of potassium chloride flotation froth images. MsFEFNet performs simultaneous feature extraction at multiple image scales and automatically learns spatial information of interest at each scale to achieve efficient multiscale information fusion. In addition, the potassium chloride flotation process is a multistage dynamic process with massive unlabeled data. To overcome its dynamic time-varying and working condition spatial similarity characteristics, a semi-supervised froth-grade prediction model based on a temporal-spatial neighborhood learning network combined with Mean Teacher (MT-TSNLNet) is proposed. MT-TSNLNet designs a new objective function for learning the temporal-spatial neighborhood structure of data. The introduction of Mean Teacher can further utilize unlabeled data to promote the proposed prediction model to better track the concentrate grade. To verify the effectiveness of the proposed MsFEFNet and MT-TSNLNet, froth image segmentation and grade prediction experiments are performed on a real-world potassium chloride flotation process dataset.
本文研究氯化钾浮选过程的性能监测问题,该过程是钾肥加工的关键环节。为解决其泡沫图像分割问题,本文提出一种多尺度特征提取与融合网络(MsFEFNet),以克服氯化钾浮选泡沫图像的多尺度和弱边缘特征。MsFEFNet在多个图像尺度上同时进行特征提取,并自动学习每个尺度上感兴趣的空间信息,以实现高效的多尺度信息融合。此外,氯化钾浮选过程是一个具有大量未标记数据的多阶段动态过程。为克服其动态时变和工况空间相似性特征,提出一种基于时空邻域学习网络与均值教师(MT-TSNLNet)相结合的半监督泡沫品位预测模型。MT-TSNLNet设计了一个新的目标函数来学习数据的时空邻域结构。均值教师的引入可以进一步利用未标记数据,促使所提出的预测模型更好地跟踪精矿品位。为验证所提出的MsFEFNet和MT-TSNLNet的有效性,在一个真实的氯化钾浮选过程数据集上进行了泡沫图像分割和品位预测实验。