Suppr超能文献

利用全长三聚体 SARS-CoV-2 刺突进行深度诱变扫描突出了 NTD-RBD 相互作用在决定刺突表型中的重要性。

Deep mutagenesis scanning using whole trimeric SARS-CoV-2 spike highlights the importance of NTD-RBD interactions in determining spike phenotype.

机构信息

Department of Infectious Diseases, Imperial College London, London, United Kingdom.

RQ Biotechnology Ltd, London, United Kingdom.

出版信息

PLoS Pathog. 2023 Aug 3;19(8):e1011545. doi: 10.1371/journal.ppat.1011545. eCollection 2023 Aug.

Abstract

New variants of SARS-CoV-2 are continually emerging with mutations in spike associated with increased transmissibility and immune escape. Phenotypic maps can inform the prediction of concerning mutations from genomic surveillance, however most of these maps currently derive from studies using monomeric RBD, while spike is trimeric, and contains additional domains. These maps may fail to reflect interdomain interactions in the prediction of phenotypes. To try to improve on this, we developed a platform for deep mutational scanning using whole trimeric spike. We confirmed a previously reported epistatic effect within the RBD affecting ACE2 binding, that highlights the importance of updating the base spike sequence for future mutational scanning studies. Using post vaccine sera, we found that the immune response of vaccinated individuals was highly focused on one or two epitopes in the RBD and that single point mutations at these positions can account for most of the immune escape mediated by the Omicron BA.1 RBD. However, unexpectedly we found that the BA.1 RBD alone does not account for the high level of antigenic escape by BA.1 spike. We show that the BA.1 NTD amplifies the immune evasion of its associated RBD. BA.1 NTD reduces neutralistion by RBD directed monoclonal antibodies, and impacts ACE2 interaction. NTD variation is thus an important mechanism of immune evasion by SARS-CoV-2. Such effects are not seen when pre-stabilized spike proteins are used, suggesting the interdomain effects require protein mobility to express their phenotype.

摘要

不断出现的 SARS-CoV-2 新变体在刺突蛋白上发生突变,导致传染性增加和免疫逃逸。表型图谱可以帮助预测来自基因组监测的令人关注的突变,然而,这些图谱大多数来自使用单体 RBD 的研究,而刺突是三聚体的,并且包含其他结构域。这些图谱可能无法反映结构域间相互作用在表型预测中的作用。为了尝试改进这一点,我们开发了一个使用整个三聚体刺突进行深度突变扫描的平台。我们证实了 RBD 中一个先前报道的影响 ACE2 结合的上位性效应,这突出了在未来的突变扫描研究中更新基础刺突序列的重要性。使用接种疫苗后的血清,我们发现接种疫苗个体的免疫反应高度集中在 RBD 的一个或两个表位上,这些位置的单点突变可以解释由 Omicron BA.1 RBD 介导的大多数免疫逃逸。然而,出乎意料的是,我们发现 BA.1 RBD 本身并不能解释 BA.1 刺突的高抗原逃逸水平。我们表明,BA.1 的 NTD 放大了其相关 RBD 的免疫逃避作用。BA.1 NTD 降低了 RBD 定向单克隆抗体的中和作用,并影响 ACE2 相互作用。因此,NTD 变异是 SARS-CoV-2 免疫逃逸的一个重要机制。当使用预稳定化的刺突蛋白时,不会出现这种效应,这表明结构域间的相互作用需要蛋白质的移动性来表达其表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ae/10426949/b9d7f2e43ac0/ppat.1011545.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验