Suppr超能文献

基于迁移学习和层次分裂的病理癌症诊断和预后预测通用 AI 方法。

A generalized AI method for pathology cancer diagnosis and prognosis prediction based on transfer learning and hierarchical split.

机构信息

School of automation, Central South University, 410083, People's Republic of China.

School of Software, Xinjiang University, 830001, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 29;68(17). doi: 10.1088/1361-6560/aced34.

Abstract

This study aims to propose a generalized AI method for pathology cancer diagnosis and prognosis prediction based on transfer learning and hierarchical split.We present a neural network framework for cancer diagnosis and prognosis prediction in pathological images. To enhance the network's depth and width, we employ a hierarchical split block (HS-Block) to create an AI-aided diagnosis system suitable for semi-supervised clinical settings with limited labeled samples and cross-domain tasks. By incorporating a lightweight convolution unit based on the HS-Block, we improve the feature information extraction capabilities of a regular network (RegNet). Additionally, we integrate a Convolutional Block Attention Module into the first and last convolutions to optimize the extraction of global features and local details. To address limited sample labels, we employ a dual-transfer learning (DTL) mechanism named DTL-HS-Regnet, enabling semi-supervised learning in clinical settings.Our proposed DTL-HS-Regnet model outperforms other advanced deep-learning models in three different types of cancer diagnosis tasks. It demonstrates superior feature extraction ability, achieving an average sensitivity, specificity, accuracy, and F1 score of 0.9987, 1.0000, 1.0000 and 0.9992, respectively. Furthermore, we evaluate the model's capability to directly extract prognosis prediction information from pathological images by constructing patient cohorts. The results show that the correlation between DTL-HS-Regnet predictions and the presence of cancer-associated fibroblasts is comparable to that of pathologists.Our proposed AI method offers a generalized approach for cancer diagnosis and prognosis prediction in pathology. The outstanding performance of the DTL-HS-Regnet model demonstrates its potential for improving current practices in image digital pathology, expanding the boundaries of cancer treatment in two critical areas.

摘要

本研究旨在提出一种基于迁移学习和层次分裂的通用人工智能方法,用于病理学癌症诊断和预后预测。我们提出了一种基于神经网络的癌症诊断和预后预测方法,用于病理图像。为了增强网络的深度和宽度,我们采用了层次分裂块(HS-Block)来创建一个人工智能辅助诊断系统,适用于具有有限标记样本和跨域任务的半监督临床环境。通过在 HS-Block 基础上引入轻量级卷积单元,我们提高了常规网络(RegNet)的特征信息提取能力。此外,我们在第一个和最后一个卷积中集成了卷积块注意力模块,以优化全局特征和局部细节的提取。为了解决有限的样本标签问题,我们采用了一种名为 DTL-HS-Regnet 的双重迁移学习(DTL)机制,实现了临床环境中的半监督学习。我们提出的 DTL-HS-Regnet 模型在三种不同类型的癌症诊断任务中均优于其他先进的深度学习模型。它表现出了优越的特征提取能力,平均灵敏度、特异性、准确性和 F1 评分分别达到 0.9987、1.0000、1.0000 和 0.9992。此外,我们通过构建患者队列来评估模型从病理图像中直接提取预后预测信息的能力。结果表明,DTL-HS-Regnet 预测与癌症相关成纤维细胞存在之间的相关性与病理学家相当。我们提出的人工智能方法为病理学中的癌症诊断和预后预测提供了一种通用方法。DTL-HS-Regnet 模型的出色表现表明其具有提高图像数字病理学现有实践水平的潜力,扩展了癌症治疗在两个关键领域的边界。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验