Suppr超能文献

患者来源的肿瘤模型:食管癌临床前研究的合适工具。

Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer.

机构信息

Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.

School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.

出版信息

Cancer Gene Ther. 2023 Nov;30(11):1443-1455. doi: 10.1038/s41417-023-00652-9. Epub 2023 Aug 3.

Abstract

Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.

摘要

食管癌(EC)是全球第十大常见癌症,具有较高的发病率和死亡率。其主要亚型包括食管鳞状细胞癌和食管腺癌,通常在晚期诊断。临床前模型的生物学缺陷和无法完全总结多种因素的病因、肿瘤微环境的复杂性以及肿瘤的遗传异质性严重限制了 EC 的临床治疗。EC 的患者来源模型不仅保留了原始肿瘤的组织结构、细胞形态和分化特征,还保留了肿瘤异质性。因此,与其他临床前模型相比,它们可以更好地预测候选药物的疗效,探索新的生物标志物,与临床试验相结合,有效改善患者预后。本综述讨论了建立患者来源模型和基因工程小鼠模型的方法和动物,特别是患者来源异种移植模型。还讨论了它们作为临床前实验研究工具的优缺点和局限性,为 EC 的精确个体化治疗提供了重要参考,改善了患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验