Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Adv Sci (Weinh). 2024 Jan;11(3):e2306210. doi: 10.1002/advs.202306210. Epub 2023 Nov 23.
Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.
细胞间通讯对于所有组织的形成和稳态功能都至关重要。先前的研究表明,细胞可以通过其周围细胞外基质传递细胞产生的力来进行机械通讯,但这一过程尚不清楚。在这里,利用机械定义的、合成的电纺纤维基质,并结合基于微制造的细胞图案化方法,研究了内皮细胞(ECs)在组装成相互连接的多细胞网络过程中细胞力介导的细胞间基质位移(MIC)。研究发现,在可变形纤维基质中,细胞力介导的基质位移是相邻 EC 彼此朝向延伸和迁移的基础,然后才形成富含血管内皮钙黏蛋白(VE-cadherin)的稳定细胞-细胞连接。研究还确定了粘着斑激酶和机械敏感离子通道介导的钙信号在 MIC 中的关键作用,当 EC 嵌入纤维蛋白水凝胶中时,这种作用扩展到 3D 血管样网络的多细胞组装。这些结果说明了细胞产生的力和细胞外基质力学性质在毛细血管样 EC 网络的多细胞组装中的作用,并促使设计促进 MIC 的生物材料用于血管组织工程。