Suppr超能文献

基于韧性的脑卒中患者实时个体化支持自我管理研究:一项随机对照试验方案。

Study on self-management of real-time and individualized support in stroke patients based on resilience: a protocol for a randomized controlled trial.

机构信息

West China School of Nursing/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Department of Surgical Anesthesiology, Tai'an City Central Hospital, Tai'an, China.

出版信息

Trials. 2023 Aug 3;24(1):493. doi: 10.1186/s13063-023-07475-x.

Abstract

BACKGROUND

The transitional period from hospital to home is vital for stroke patients, but it poses serious challenges. Good self-management ability can optimize disease outcomes. However, stroke patients in China have a low level of self-management ability during the transitional period, and a lack of effective support may be the reason. With the rapid development of technology, using wearable monitors to achieve real-time and individualized support may be the key to solving this problem. This study uses a randomized controlled trial design to assess the efficacy of using wearable technology to realize real-time and individualized self-management support in stroke patients' self-management behavior during the transitional period following discharge from hospital.

METHODS

This parallel-group randomized controlled trial will be conducted in two hospitals and patients' homes. A total of 183 adult stroke patients will be enrolled in the study and randomly assigned to three groups in a 1:1:1 ratio. The smartwatch intervention group (n = 61) will receive Real-time and Individualized Self-management Support (RISS) program + routine care, the wristband group (n = 61) will wear a fitness tracker (self-monitoring) + routine care, and the control group (n = 61) will receive routine stroke care. The intervention will last for 6 months. The primary outcomes are neurological function status, self-management behavior, quality of life, biochemical indicators, recurrence rate, and unplanned readmission rate. Secondary outcomes are resilience, patient activation, psychological status, and caregiver assessments. The analysis is intention-to-treat. The intervention effect will be evaluated at baseline (T0), 2 months after discharge (T1), 3 months after discharge (T2), and 6 months after discharge (T3).

DISCUSSION

The cloud platform designed in this study not only has the function of real-time recording but also can push timely solutions when patients have abnormal conditions, as well as early warnings or alarms. This study could also potentially help patients develop good self-management habits through resilience theory, wearable devices, and individualized problem-solution library of self-management which can lay the foundation for long-term maintenance and continuous improvement of good self-management behavior in the future.

TRIAL REGISTRATION

The ethics approval has been granted by the Ethics Committee of West China Hospital, Sichuan University (2022-941). All patients will be informed of the study details and sign a written informed consent form before enrollment. The research results will be reported in conferences and peer-reviewed publications. The trial registration number is ChiCTR2300070384 . Registered on 11 April 2023.

摘要

背景

脑卒中患者从医院到家庭的过渡期至关重要,但这也带来了严峻的挑战。良好的自我管理能力可以优化疾病结局。然而,中国脑卒中患者在过渡期的自我管理能力较低,缺乏有效的支持可能是原因之一。随着技术的快速发展,使用可穿戴监测仪实现实时和个体化支持可能是解决这一问题的关键。本研究采用随机对照试验设计,评估使用可穿戴技术实现脑卒中患者出院后过渡期自我管理行为实时和个体化自我管理支持的效果。

方法

本平行组随机对照试验将在两家医院和患者家中进行。共纳入 183 名成年脑卒中患者,按 1:1:1 的比例随机分为三组。智能手表干预组(n=61)将接受实时和个体化自我管理支持(RISS)计划+常规护理,腕带组(n=61)将佩戴健身追踪器(自我监测)+常规护理,对照组(n=61)将接受常规脑卒中护理。干预将持续 6 个月。主要结局为神经功能状态、自我管理行为、生活质量、生化指标、复发率和非计划性再入院率。次要结局为韧性、患者激活、心理状态和照顾者评估。分析采用意向治疗。干预效果将在基线(T0)、出院后 2 个月(T1)、出院后 3 个月(T2)和出院后 6 个月(T3)进行评估。

讨论

本研究设计的云平台不仅具有实时记录的功能,还可以在患者出现异常情况时推送及时的解决方案,以及预警或报警。本研究还可能通过韧性理论、可穿戴设备和自我管理个体化问题解决方案库帮助患者养成良好的自我管理习惯,为未来长期维持和不断改善良好的自我管理行为奠定基础。

试验注册

本研究已获得四川大学华西医院伦理委员会的批准(2022-941)。所有患者在入组前将被告知研究详情,并签署书面知情同意书。研究结果将在会议和同行评议出版物中报告。试验注册编号为 ChiCTR2300070384,于 2023 年 4 月 11 日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0d0/10401848/151e8ff53c0d/13063_2023_7475_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验