Suppr超能文献

重新思考景天酸代谢的潜在生产力,通过将代谢动力学与芽结构整合,以龙舌兰属 tequilana 为例。

Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana.

机构信息

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA.

Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.

出版信息

New Phytol. 2023 Sep;239(6):2180-2196. doi: 10.1111/nph.19128. Epub 2023 Aug 3.

Abstract

Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha  yr dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.

摘要

陆生 CAM 植物通常出现在炎热的半干旱地区,但在有利条件下可以表现出较高的作物生产力。为了更深入地了解 CAM 植物的生产力,我们构建了一个昼夜代谢的生化模型,并与 3D 冠层形态相结合,以预测光能截获和光合作用碳同化的能量学。以龙舌兰属的龙舌兰为例,该生化模型准确地模拟了 CAM 节律中 CO 和代谢物动力学的四个昼夜阶段。在捕获 8 年生产周期的 3D 形态后,光线追踪方法允许预测所有光合表面的光微气候。与生化模型相结合,从而能够模拟植物和林分在日和年过程中的碳吸收。龙舌兰属植物的理论最大能量转换效率计算值为 0.045-0.049,比 C 光合作用高 7%。实际的光能截获以及生化和解剖限制将其降低至 0.0069,或在 8 年的种植周期中,每年每公顷干质量为 15.6 Mg,与观察结果一致。这与许多 C 作物的生产力相当,表明在其他作物可能无法生长的气候条件下,CAM 植物具有潜力,同时也表明了提高其生产力的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验