Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Biophys J. 2023 Oct 3;122(19):3831-3842. doi: 10.1016/j.bpj.2023.07.028. Epub 2023 Aug 3.
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that carries out a key adhesive function during primary hemostasis. Upon vascular injury and triggered by the shear of flowing blood, VWF establishes specific interactions with several molecular partners in order to anchor platelets to collagen on the exposed subendothelial surface. VWF also interacts with itself to form aggregates that, adsorbed on the surface, provide more anchor sites for the platelets. However, the interplay between elongation and subsequent exposure of cryptic binding sites, self-association, and adsorption on the surface remained unclear for VWF. In particular, the role of shear flow in these three processes is not well understood. In this study, we address these questions by using Brownian dynamics simulations at a coarse-grained level of resolution. We considered a system consisting of multiple VWF-like self-interacting chains that also interact with a surface under a shear flow. By a systematic analysis, we reveal that chain-chain and chain-surface interactions coexist nontrivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and its propensity to form shear-assisted functional adsorbed aggregates. Our data highlight the collective behavior VWF self-interacting chains have when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow, at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay that exists between adsorption, cohesion, and shear forces and their relevance for the adhesive hemostatic function of VWF.
血管性血友病因子(VWF)是一种巨大的细胞外糖蛋白,在初级止血过程中发挥关键的黏附功能。血管损伤时,在血流剪切力的触发下,VWF 与几种分子伴侣建立特异性相互作用,将血小板锚定在暴露的内皮下胶原表面。VWF 还与自身相互作用形成聚集体,这些聚集体吸附在表面上,为血小板提供更多的锚定位点。然而,VWF 中伸长和随后暴露隐匿结合位点、自组装以及表面吸附之间的相互作用仍不清楚。特别是,剪切流在这三个过程中的作用还没有得到很好的理解。在这项研究中,我们使用粗粒化水平的布朗动力学模拟来解决这些问题。我们考虑了一个由多个类似 VWF 的自相互作用链组成的系统,这些链还在剪切流下与表面相互作用。通过系统分析,我们揭示了链-链和链-表面相互作用共同存在,显著调节 VWF 的自发吸附和随后固定的次级连接链。因此,这些相互作用调节了 VWF 的延伸及其形成剪切辅助功能吸附聚集体的倾向。我们的数据突出了与表面结合的 VWF 自相互作用链的集体行为,与孤立或流动链的行为明显不同。此外,我们表明,在 VWF 单体分辨率水平上,伸展和暴露于溶剂对剪切流具有相似的依赖性。总的来说,我们的结果强调了吸附、内聚和剪切力之间存在的复杂相互作用,以及它们与 VWF 黏附止血功能的相关性。