Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.
Department of Biological Chemistry and Molecular Pharmacology, and.
Blood. 2021 Dec 9;138(23):2425-2434. doi: 10.1182/blood.2021012595.
von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.
血管性血友病因子(VWF)是一种超长串联蛋白,在止血和血栓形成中具有重要作用。VWF 分子可以与其他 VWF 分子结合,但对于其结合机制知之甚少。流体动力阻力会对表面连接的 VWF 施加张力,使其延伸,在连接点处达到最大,并在线性下降至下游自由端的 0。使用单分子荧光显微镜,我们直接观察了自由 VWF 在流动中与表面连接的单个 VWF 分子结合的动力学。我们表明,自组装需要延伸连接的 VWF,并且与连接的 VWF 的张力增加,在特征张力约为 10 pN 时达到半最大值,并在约 25 pN 以上趋于稳定。结合是可逆的,因此是非共价的;剪切流的急剧下降会导致结合的 VWF 迅速解离。连接的初级 VWF 分子可以从流动中招募超过其自身质量的次级 VWF 分子。动力学表明,速率不是加速,而是随着时间的推移而降低,揭示了一种固有的自我限制的自组装机制。我们提出,这可能是因为次级和初级 VWF 之间的多个连接点导致次级 VWF 上的张力降低,从而使更高度紧张的初级 VWF 免受进一步的结合。糖蛋白 Ibα(GPIbα)结合和 VWF 自组装发生在连接的 VWF 串联物中高张力的同一区域;然而,激活 GPIbα 所需的半最大张力更高,这表明分子机制存在差异。这些结果对止血和血栓形成中血小板栓子形成的机制具有重要意义。