Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia; IRC Mathematical modelling in Biomedicine, S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russia.
Biophys J. 2021 Mar 2;120(5):899-911. doi: 10.1016/j.bpj.2021.01.022. Epub 2021 Jan 30.
The largest blood glycoprotein von Willebrand factor (VWF) responds to hydrodynamic stresses in the bloodstream with abrupt conformation changes, thus increasing its adhesivity to platelets and collagen. Arterial and microvascular hemostasis relies on mechanical and physicochemical properties of this macromolecule. Recently, it was discovered that the mechanical properties of VWF are controlled by multiple pH-dependent interactions with opposite trends within dimeric subunits. In this work, computer simulations reveal the effect of these intradimer forces on the conformation of VWF multimers in various hydrodynamic conditions. A coarse-grained computer model of VWF has been proposed and parameterized to give a good agreement with experimental data. The simulations suggest that strong attraction between VWF D4 domains increases the resistance to elongation under shear stress, whereas even intermediate attraction between VWF C domains contributes to VWF compaction in nonsheared fluid. It is hypothesized that the detailed subdimer dynamics of VWF concatamers may be one of the biophysical regulators of initial hemostasis and arterial thrombosis.
最大的血液糖蛋白 von Willebrand 因子 (VWF) 会对血流中的流体动力应激作出突然的构象变化,从而增加其与血小板和胶原蛋白的黏附性。动脉和微血管止血依赖于这种大分子的机械和物理化学特性。最近,人们发现 VWF 的机械特性受到二聚体亚基内多个 pH 依赖性相互作用的控制,这些相互作用的趋势相反。在这项工作中,计算机模拟揭示了这些亚基内力对各种流体动力学条件下 VWF 多聚体构象的影响。提出了一个 VWF 的粗粒化计算机模型,并对其进行了参数化,使其与实验数据很好地吻合。模拟表明,VWF D4 结构域之间的强吸引力会增加抗剪切伸长的能力,而 VWF C 结构域之间的中等吸引力也有助于未受剪切的流体中 VWF 的压缩。假设 VWF 串联多聚体的亚基内详细动力学可能是初始止血和动脉血栓形成的生物物理调节剂之一。