Suppr超能文献

重症医学中深度学习的研究热点与趋势:一项文献计量学与可视化研究

Research Hotspots and Trends of Deep Learning in Critical Care Medicine: A Bibliometric and Visualized Study.

作者信息

Zhang Kaichen, Fan Yihua, Long Kunlan, Lan Ying, Gao Peiyang

机构信息

Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.

出版信息

J Multidiscip Healthc. 2023 Jul 29;16:2155-2166. doi: 10.2147/JMDH.S420709. eCollection 2023.

Abstract

BACKGROUND

Interest in the application of deep learning (DL) in critical care medicine (CCM) is growing rapidly. However, comprehensive bibliometric research that analyze and measure the global literature is still lacking.

OBJECTIVE

The present study aimed to systematically evaluate the research hotspots and trends of DL in CCM worldwide based on the output of publications, cooperative relationships of research, citations, and the co-occurrence of keywords.

METHODS

A total of 1708 articles in all were obtained from Web of Science. Bibliometric analysis was performed by Bibliometrix package in R software (4.2.2), Microsoft Excel 2019, VOSviewer (1.6.18), and CiteSpace (5.8.R3).

RESULTS

The annual publications increased steeply in the past five years, accounting for 95.67% (1634/1708) of all the included literature. China and USA contributed to approximately 71.66% (1244/1708) of all publications. Seven of the top ten most productive organizations rank in the top 100 universities globally. Hot spots in research on the application of DL in CCM have focused on classifying disease phenotypes, predicting early signs of clinical deterioration, and forecasting disease progression, prognosis, and death. Convolutional neural networks, long and short-term memory networks, recurrent neural networks, transformer models, and attention mechanisms were all commonly used DL technologies.

CONCLUSION

Hot spots in research on the application of DL in CCM have focused on classifying disease phenotypes, predicting early signs of clinical deterioration, and forecasting disease progression, prognosis, and death. Extensive collaborative research to improve the maturity and robustness of the model remains necessary to make DL-based model applications sufficiently compelling for conventional CCM practice.

摘要

背景

深度学习(DL)在重症医学(CCM)中的应用关注度正在迅速增长。然而,仍缺乏对全球文献进行分析和计量的全面文献计量学研究。

目的

本研究旨在基于出版物产出、研究合作关系、引文以及关键词共现情况,系统评估全球范围内DL在CCM中的研究热点和趋势。

方法

总共从科学网获取了1708篇文章。使用R软件(4.2.2)中的Bibliometrix包、Microsoft Excel 2019、VOSviewer(1.6.18)和CiteSpace(5.8.R3)进行文献计量分析。

结果

在过去五年中,年度出版物数量急剧增加,占所有纳入文献的95.67%(1634/1708)。中国和美国贡献了所有出版物的约71.66%(1244/1708)。十大高产机构中有七个位列全球前100所大学。DL在CCM中应用的研究热点集中在疾病表型分类、临床恶化早期迹象预测以及疾病进展、预后和死亡预测。卷积神经网络、长短时记忆网络、循环神经网络、Transformer模型和注意力机制都是常用的DL技术。

结论

DL在CCM中应用的研究热点集中在疾病表型分类、临床恶化早期迹象预测以及疾病进展、预后和死亡预测。为使基于DL的模型应用足以吸引传统CCM实践,开展广泛的合作研究以提高模型的成熟度和稳健性仍然很有必要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8247/10395519/fddd5068afbc/JMDH-16-2155-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验