Suppr超能文献

脑形态计量学特征利用深度学习模型预测老年抑郁症的抑郁症状表型。

Brain morphometric features predict depression symptom phenotypes in late-life depression using a deep learning model.

作者信息

Cao Bing, Yang Erkun, Wang Lihong, Mo Zhanhao, Steffens David C, Zhang Han, Liu Mingxia, Potter Guy G

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

出版信息

Front Neurosci. 2023 Jul 19;17:1209906. doi: 10.3389/fnins.2023.1209906. eCollection 2023.

Abstract

OBJECTIVES

Our objective was to use deep learning models to identify underlying brain regions associated with depression symptom phenotypes in late-life depression (LLD).

PARTICIPANTS

Diagnosed with LLD ( = 116) and enrolled in a prospective treatment study.

DESIGN

Cross-sectional.

MEASUREMENTS

Structural magnetic resonance imaging (sMRI) was used to predict five depression symptom phenotypes from the Hamilton and MADRS depression scales previously derived from factor analysis: (1) Anhedonia, (2) Suicidality, (3) Appetite, (4) Sleep Disturbance, and (5) Anxiety. Our deep learning model was deployed to predict each factor score via learning deep feature representations from 3D sMRI patches in 34 a regions-of-interests (ROIs). ROI-level prediction accuracy was used to identify the most discriminative brain regions associated with prediction of factor scores representing each of the five symptom phenotypes.

RESULTS

Factor-level results found significant predictive models for Anxiety and Suicidality factors. ROI-level results suggest the most LLD-associated discriminative regions in predicting all five symptom factors were located in the anterior cingulate and orbital frontal cortex.

CONCLUSIONS

We validated the effectiveness of using deep learning approaches on sMRI for predicting depression symptom phenotypes in LLD. We were able to identify deep embedded local morphological differences in symptom phenotypes in the brains of those with LLD, which is promising for symptom-targeted treatment of LLD. Future research with machine learning models integrating multimodal imaging and clinical data can provide additional discriminative information.

摘要

目的

我们的目标是使用深度学习模型来识别与老年期抑郁症(LLD)症状表型相关的潜在脑区。

参与者

被诊断为LLD(n = 116)并参加了一项前瞻性治疗研究。

设计

横断面研究。

测量

使用结构磁共振成像(sMRI)从先前通过因子分析得出的汉密尔顿和蒙哥马利-艾森伯格抑郁量表中预测五种抑郁症状表型:(1)快感缺失,(2)自杀观念,(3)食欲,(4)睡眠障碍,以及(5)焦虑。我们的深度学习模型通过从34个感兴趣区域(ROI)的3D sMRI图像块中学习深度特征表示来预测每个因子得分。ROI水平的预测准确性用于识别与代表五种症状表型中每种表型的因子得分预测相关的最具判别力的脑区。

结果

因子水平的结果发现了焦虑和自杀观念因子的显著预测模型。ROI水平的结果表明,在预测所有五个症状因子时,与LLD相关性最强的判别区域位于前扣带回和眶额皮质。

结论

我们验证了在sMRI上使用深度学习方法预测LLD抑郁症状表型的有效性。我们能够识别出LLD患者大脑中症状表型的深层局部形态差异,这对于LLD的症状靶向治疗很有前景。未来将机器学习模型与多模态成像和临床数据相结合的研究可以提供更多的判别信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验