School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
Med Image Anal. 2023 Oct;89:102911. doi: 10.1016/j.media.2023.102911. Epub 2023 Jul 29.
Label distribution learning (LDL) has the potential to resolve boundary ambiguity in semantic segmentation tasks. However, existing LDL-based segmentation methods suffer from severe label distribution imbalance: the ambiguous label distributions contain a small fraction of the data, while the unambiguous label distributions occupy the majority of the data. The imbalanced label distributions induce model-biased distribution learning and make it challenging to accurately predict ambiguous pixels. In this paper, we propose a curriculum label distribution learning (CLDL) framework to address the above data imbalance problem by performing a novel task-oriented curriculum learning strategy. Firstly, the region label distribution learning (R-LDL) is proposed to construct more balanced label distributions and improves the imbalanced model learning. Secondly, a novel learning curriculum (TCL) is proposed to enable easy-to-hard learning in LDL-based segmentation by decomposing the segmentation task into multiple label distribution estimation tasks. Thirdly, the prior perceiving module (PPM) is proposed to effectively connect easy and hard learning stages based on the priors generated from easier stages. Benefiting from the balanced label distribution construction and prior perception, the proposed CLDL effectively conducts a curriculum learning-based LDL and significantly improves the imbalanced learning. We evaluated the proposed CLDL using the publicly available BRATS2018 and MM-WHS2017 datasets. The experimental results demonstrate that our method significantly improves different segmentation metrics compared to many state-of-the-art methods. The code will be available..
标签分布学习(LDL)有潜力解决语义分割任务中的边界模糊问题。然而,现有的基于 LDL 的分割方法存在严重的标签分布不平衡问题:模糊标签分布只包含一小部分数据,而明确标签分布则占据了大部分数据。不平衡的标签分布导致模型偏向于分布学习,从而难以准确预测模糊像素。在本文中,我们提出了一种课程式标签分布学习(CLDL)框架,通过执行一种新颖的面向任务的课程学习策略来解决上述数据不平衡问题。首先,提出区域标签分布学习(R-LDL)来构建更平衡的标签分布,从而改善不平衡模型学习。其次,提出了一种新颖的学习课程(TCL),通过将分割任务分解为多个标签分布估计任务,在基于 LDL 的分割中实现从易到难的学习。最后,提出了先验感知模块(PPM),基于较容易阶段生成的先验,有效地连接了容易和困难的学习阶段。受益于平衡的标签分布构建和先验感知,所提出的 CLDL 有效地进行了基于课程的 LDL,并显著改善了不平衡学习。我们使用公开的 BRATS2018 和 MM-WHS2017 数据集评估了所提出的 CLDL。实验结果表明,与许多最先进的方法相比,我们的方法在不同的分割指标上都有显著的提高。代码将公开。