Kumar D Praveen, Do Khai H, Rangappa A Putta, Lee Jehee, Wang Jinming, Boppella Ramireddy, Gopannagari Madhusudana, Reddy K Arun Joshi, Reddy D Amaranatha, Kim Tae Kyu
Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
Department of Sciences, Indian Institute of Information Technology Design and Manufacturing, Kurnool 581007, Andhra Pradesh, India.
J Colloid Interface Sci. 2023 Dec;651:264-272. doi: 10.1016/j.jcis.2023.07.197. Epub 2023 Jul 30.
Developing new and highly stable efficient photocatalysts is crucial for achieving high performance and selective photocatalytic CO conversion. In this paper, we designed a one-dimensional oxygen-deficient blue TiO(B) (BT) catalyst for improved electron mobility and visible light accessibility. In addition, hexagonal ZnInS (ZIS) nanosheets with a low bandgap and great visible light accessibility are employed to produce effective heterostructures with BT. The synthesized materials are tested for photocatalytic conversion of CO into solar fuels (H, CO and CH). The optimized composite yields 71.6 and 10.3 μmol gh of CO and CH, three and ten times greater than ZIS, respectively. When ZIS nanosheets are combined with a one-dimensional oxygen-deficient BT catalyst, improved electron mobility and visible light accessibility are achieved, charge carriers are effectively segregated, and the transfer process is accelerated, resulting in efficient CO reduction. The photocatalytic CO conversion activity of the constructed BT/ZIS heterostructures is very stable over a 10-day (240-hour) period, and CO and CH production rates increase linearly with time; however, as time goes on, the rates of H production decrease. Further, a five-time recycling test confirmed this, revealing essentially equal activity and selectivity throughout the experiment. As a result, CO to CO and CH conversion has high selectivity and longer durability. The band structure of the BT/ZIS composite is determined using Mott-Schottky measurement, diffuse reflectance spectroscopy, and valence band X-ray photoelectron spectroscopy. This research demonstrates a novel approach to investigating effective, stable, and selective photocatalytic CO reduction systems for solar-to-chemical energy conversion.
开发新型且高度稳定的高效光催化剂对于实现高性能和选择性光催化CO转化至关重要。在本文中,我们设计了一种一维缺氧蓝色TiO(B)(BT)催化剂,以提高电子迁移率和可见光可及性。此外,具有低带隙和良好可见光可及性的六方ZnInS(ZIS)纳米片被用于与BT产生有效的异质结构。对合成材料进行了光催化将CO转化为太阳能燃料(H、CO和CH)的测试。优化后的复合材料分别产生71.6和10.3 μmol g h的CO和CH,分别是ZIS的三倍和十倍。当ZIS纳米片与一维缺氧BT催化剂结合时,实现了改善的电子迁移率和可见光可及性,电荷载流子得到有效分离,转移过程加速,从而实现高效的CO还原。构建的BT/ZIS异质结构的光催化CO转化活性在10天(240小时)内非常稳定,CO和CH的产率随时间线性增加;然而,随着时间的推移,H的产生速率下降。此外,五次循环测试证实了这一点,表明在整个实验过程中活性和选择性基本相等。结果,CO到CO和CH的转化具有高选择性和更长的耐久性。使用莫特-肖特基测量、漫反射光谱和价带X射线光电子能谱确定了BT/ZIS复合材料的能带结构。这项研究展示了一种研究用于太阳能到化学能转化的有效、稳定和选择性光催化CO还原系统的新方法。