Biophysics Program, Stanford University, Stanford, CA 94305, USA.
Department of Genetics, Stanford University, Stanford, CA 94305, USA.
Cell Syst. 2023 Sep 20;14(9):746-763.e5. doi: 10.1016/j.cels.2023.07.001. Epub 2023 Aug 4.
Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.
尽管人们对单个人类转录效应结构域的功能有了越来越多的了解,但对于同一蛋白质内的多个效应结构域如何协同调节基因表达,人们的了解要少得多。在这里,我们通过将 8400 种效应结构域组合招募到人类细胞中的报告基因上来测量转录活性。在我们的实验中,弱和中度激活结构域协同作用以驱动强基因表达,而组合强激活剂通常会导致较弱的激活。相比之下,抑制剂呈线性组合并产生完全基因沉默,并且抑制剂结构域通常强于激活结构域。我们利用这些信息构建了一个合成转录因子,通过使用小分子药物将其招募到靶基因,其功能可以在抑制和激活之间进行调整。总的来说,我们概述了效应结构域如何协同调节基因表达的基本原理,并展示了它们在构建精确和灵活的合成生物学工具方面的价值。本论文的透明同行评审过程记录包含在补充信息中。