Suppr超能文献

一种基于无模型框架的方法,利用药物-药物相互作用数据和有监督对比学习来增强基于知识图谱的药物组合预测。

A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning.

机构信息

Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea.

Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad285.

Abstract

Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.

摘要

联合疗法在医学领域为各种疾病的治疗带来了重大进展。然而,由于可能的组合数量众多,寻找有效的药物组合仍然是一个主要挑战。基于生物医学知识图 (KG) 的方法已显示出在预测广谱疾病的有效组合方面的潜力,但缺乏可信的负样本限制了机器学习模型的预测性能。为了解决这个问题,我们提出了一种新颖的与模型无关的框架,该框架利用现有的药物-药物相互作用 (DDI) 数据作为可靠的负数据集,并采用监督对比学习 (SCL) 将药物嵌入向量转换为更适合药物组合预测的向量。我们在生物医学 KG 上使用各种网络嵌入算法(包括随机游走和图神经网络)进行了广泛的实验。与基线框架相比,我们的框架显著提高了性能指标。我们还提供了嵌入空间可视化和案例研究,展示了我们方法的有效性。这项工作强调了在寻找更紧密的决策边界以预测有效药物组合方面使用 DDI 数据和 SCL 的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验