Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea.
Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad285.
Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.
联合疗法在医学领域为各种疾病的治疗带来了重大进展。然而,由于可能的组合数量众多,寻找有效的药物组合仍然是一个主要挑战。基于生物医学知识图 (KG) 的方法已显示出在预测广谱疾病的有效组合方面的潜力,但缺乏可信的负样本限制了机器学习模型的预测性能。为了解决这个问题,我们提出了一种新颖的与模型无关的框架,该框架利用现有的药物-药物相互作用 (DDI) 数据作为可靠的负数据集,并采用监督对比学习 (SCL) 将药物嵌入向量转换为更适合药物组合预测的向量。我们在生物医学 KG 上使用各种网络嵌入算法(包括随机游走和图神经网络)进行了广泛的实验。与基线框架相比,我们的框架显著提高了性能指标。我们还提供了嵌入空间可视化和案例研究,展示了我们方法的有效性。这项工作强调了在寻找更紧密的决策边界以预测有效药物组合方面使用 DDI 数据和 SCL 的潜力。