Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada.
Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada.
BMC Bioinformatics. 2024 Jan 30;25(1):47. doi: 10.1186/s12859-024-05643-7.
Drug-drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chemical spaces, primarily due to the scarcity of high-quality labeled DDI data. Inspired by recent advances in computer vision, we present SMR-DDI, a self-supervised framework that leverages contrastive learning to embed drugs into a scaffold-based feature space. Molecular scaffolds represent the core structural motifs that drive pharmacological activities, making them valuable for learning informative representations. Specifically, we pre-trained SMR-DDI on a large-scale unlabeled molecular dataset. We generated augmented views for each molecule via SMILES enumeration and optimized the embedding process through contrastive loss minimization between views. This enables the model to capture relevant and robust molecular features while reducing noise. We then transfer the learned representations for the downstream prediction of DDI. Experiments show that the new feature space has comparable expressivity to state-of-the-art molecular representations and achieved competitive DDI prediction results while training on less data. Additional investigations also revealed that pre-training on more extensive and diverse unlabeled molecular datasets improved the model's capability to embed molecules more effectively. Our results highlight contrastive learning as a promising approach for DDI prediction that can identify potentially hazardous drug combinations using only structural information.
药物-药物相互作用(DDI)是医疗保健中的一个关键问题,因为它们有可能引起不良反应,危及患者安全。用于药物相互作用预测的监督机器学习模型需要进行优化,以学习抽象的、可转移的特征,并推广到更大的化学空间,这主要是由于高质量的标记药物相互作用数据稀缺。受计算机视觉领域最新进展的启发,我们提出了 SMR-DDI,这是一个基于自监督学习的框架,利用对比学习将药物嵌入基于支架的特征空间中。分子支架代表了驱动药理活性的核心结构基序,因此对于学习有意义的表示形式非常有价值。具体来说,我们在大规模无标记分子数据集上对 SMR-DDI 进行了预训练。我们通过 SMILES 枚举为每个分子生成了增强视图,并通过视图之间的对比损失最小化来优化嵌入过程。这使模型能够在减少噪声的同时捕获相关且稳健的分子特征。然后,我们将学习到的表示用于下游药物相互作用预测。实验表明,新的特征空间与最先进的分子表示具有相当的表现力,并在训练数据较少的情况下实现了有竞争力的药物相互作用预测结果。进一步的研究还表明,在更广泛和多样化的无标记分子数据集上进行预训练可以提高模型更有效地嵌入分子的能力。我们的研究结果强调了对比学习作为一种有前途的药物相互作用预测方法的潜力,它可以仅使用结构信息来识别潜在的危险药物组合。