Suppr超能文献

糖尿病肾病的诊断挑战。

Diagnostic challenges of diabetic kidney disease.

机构信息

Department of clinical chemistry and laboratory medicine, University hospital Merkur, Zagreb, Croatia.

Vuk Vrhovac University clinic for diabetes, endocrinology and metabolic diseases, University hospital Merkur, Zagreb, Croatia.

出版信息

Biochem Med (Zagreb). 2023 Oct 15;33(3):030501. doi: 10.11613/BM.2023.030501. Epub 2023 Aug 5.

Abstract

Diabetic kidney disease (DKD) is one of the most common microvascular complications of both type 1 and type 2 diabetes and the most common cause of the end-stage renal disease (ESRD). It has been evidenced that targeted interventions at an early stage of DKD can efficiently prevent or delay the progression of kidney failure and improve patient outcomes. Therefore, regular screening for DKD has become one of the fundamental principles of diabetes care. Long-established biomarkers such as serum-creatinine-based estimates of glomerular filtration rate and albuminuria are currently the cornerstone of diagnosis and risk stratification in routine clinical practice. However, their immanent biological limitations and analytical variations may influence the clinical interpretation of the results. Recently proposed new predictive equations without the variable of race, together with the evidence on better accuracy of combined serum creatinine and cystatin C equations, and both race- and sex-free cystatin C-based equation, have enabled an improvement in the detection of DKD, but also require the harmonization of the recommended laboratory tests, wider availability of cystatin C testing and specific approach in various populations. Considering the complex pathophysiology of DKD, particularly in type 2 diabetes, a panel of biomarkers is needed to classify patients in terms of the rate of disease progression and/or response to specific interventions. With a personalized approach to diagnosis and treatment, in the future, it will be possible to respond to DKD better and enable improved outcomes for numerous patients worldwide.

摘要

糖尿病肾病(DKD)是 1 型和 2 型糖尿病最常见的微血管并发症之一,也是终末期肾病(ESRD)的最常见原因。有证据表明,在 DKD 的早期阶段进行有针对性的干预可以有效地预防或延缓肾衰竭的进展,并改善患者的预后。因此,定期筛查 DKD 已成为糖尿病护理的基本原则之一。长期以来建立的生物标志物,如基于血清肌酐的肾小球滤过率估计值和蛋白尿,目前是常规临床实践中诊断和风险分层的基石。然而,它们内在的生物学局限性和分析变异可能会影响结果的临床解释。最近提出的不考虑种族变量的新预测方程,以及关于联合血清肌酐和胱抑素 C 方程更准确的证据,以及种族和性别无关的基于胱抑素 C 的方程,都提高了 DKD 的检测能力,但也需要协调推荐的实验室检测,更广泛地提供胱抑素 C 检测,并在各种人群中采用特定方法。考虑到 DKD 的复杂病理生理学,特别是在 2 型糖尿病中,需要一组生物标志物来根据疾病进展速度和/或对特定干预措施的反应对患者进行分类。通过个性化的诊断和治疗方法,未来将能够更好地应对 DKD,并为全球众多患者带来更好的预后。

相似文献

1
Diagnostic challenges of diabetic kidney disease.糖尿病肾病的诊断挑战。
Biochem Med (Zagreb). 2023 Oct 15;33(3):030501. doi: 10.11613/BM.2023.030501. Epub 2023 Aug 5.
2
Novel biomarkers for prognosticating diabetic kidney disease progression.用于预测糖尿病肾病进展的新型生物标志物。
Int Urol Nephrol. 2023 Apr;55(4):913-928. doi: 10.1007/s11255-022-03354-7. Epub 2022 Oct 22.
6
Real-World Diagnosis and Treatment of Diabetic Kidney Disease.真实世界中糖尿病肾病的诊断与治疗。
Adv Ther. 2021 Aug;38(8):4425-4441. doi: 10.1007/s12325-021-01777-9. Epub 2021 Jul 13.

引用本文的文献

2
Renal microcirculation and mechanisms in diabetic kidney disease.糖尿病肾病中的肾微循环及其机制
Front Endocrinol (Lausanne). 2025 Jun 5;16:1580608. doi: 10.3389/fendo.2025.1580608. eCollection 2025.
10
A nomograph model for predicting the risk of diabetes nephropathy.一种用于预测糖尿病肾病风险的列线图模型。
Int Urol Nephrol. 2025 Jun;57(6):1919-1931. doi: 10.1007/s11255-024-04351-8. Epub 2025 Jan 8.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验