Suppr超能文献

选择合适的品种有助于洞察植物育种实践与理想状态之间的差距。

Oracle selection provides insight into how far off practice is from Utopia in plant breeding.

作者信息

Vanavermaete David, Maenhout Steven, Fostier Jan, De Baets Bernard

机构信息

KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium.

Predictive Breeding, Department of Plants and Crops, Ghent University, Ghent, Belgium.

出版信息

Front Plant Sci. 2023 Jul 21;14:1218665. doi: 10.3389/fpls.2023.1218665. eCollection 2023.

Abstract

Since the introduction of genomic selection in plant breeding, high genetic gains have been realized in different plant breeding programs. Various methods based on genomic estimated breeding values (GEBVs) for selecting parental lines that maximize the genetic gain as well as methods for improving the predictive performance of genomic selection have been proposed. Unfortunately, it remains difficult to measure to what extent these methods really maximize long-term genetic values. In this study, we propose oracle selection, a hypothetical frame of mind that uses the ground truth to optimally select parents or optimize the training population in order to maximize the genetic gain in each breeding cycle. Clearly, oracle selection cannot be applied in a true breeding program, but allows for the assessment of existing parental selection and training population update methods and the evaluation of how far these methods are from the optimal utopian solution.

摘要

自从在植物育种中引入基因组选择以来,不同的植物育种计划都实现了较高的遗传增益。人们提出了各种基于基因组估计育种值(GEBVs)来选择亲本系以最大化遗传增益的方法,以及提高基因组选择预测性能的方法。不幸的是,仍然难以衡量这些方法在多大程度上真正最大化了长期遗传值。在本研究中,我们提出了理想选择,这是一种假设的思维框架,它利用真实情况来最优地选择亲本或优化训练群体,以便在每个育种周期中最大化遗传增益。显然,理想选择不能应用于真正的育种计划,但它可以用于评估现有的亲本选择和训练群体更新方法,以及评估这些方法与最优理想解决方案的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a6/10401442/06584599b830/fpls-14-1218665-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验