Suppr超能文献

通过优化参考个体的校准集来提高基因组选择的可靠性:两种不同群体的玉米自交系(Zea mays L.)中的方法比较。

Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.).

机构信息

Unité Mixte de Recherche (UMR) de Génétique Végétale, Institut National de la Recherche Agronomique (INRA), Université Paris-Sud, Centre National de la Recherche Scientifique (CNRS), 91190 Gif-sur-Yvette, France.

出版信息

Genetics. 2012 Oct;192(2):715-28. doi: 10.1534/genetics.112.141473. Epub 2012 Aug 3.

Abstract

Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived from the realized additive relationship matrix-best linear unbiased predictions model (RA-BLUP) were used to select the reference individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is available on request.

摘要

基因组选择是指利用基因型信息预测选择对象的育种值。预测公式是通过对构成校准集的参考个体的基因型和表型进行校准得到的。这个集合的大小和组成是影响预测可靠性的重要参数。本研究的目的是通过优化校准集来最大化可靠性。使用基于多样性或基于从实现的加性关系矩阵最佳线性无偏预测模型(RA-BLUP)得出的预测误差方差(PEV)的不同标准来选择参考个体。对于后者,我们考虑了每个选择对象与群体平均值之间的 PEV 平均值(PEVmean)和相同对比的预期可靠性平均值(CDmean)。这些标准使用在玉米(Zea mays L.)两个多样性面板上收集的表型数据进行了测试,这些面板使用 50k SNP 阵列进行了基因分型。在两个面板中,基于 CDmean 选择的样本在各种校准集大小下的可靠性均高于随机样本。CDmean 也优于 PEVmean,这可以解释为它考虑了由于个体之间的相关性而导致的方差减小。选择的样本在广泛的性状遗传力范围内接近最优,这表明这里提出的策略可以有效地从自交系面板中抽样子集。根据 CDmean 优化参考样本的脚本可应要求提供。

相似文献

5
Genomic prediction of tocochromanols in exotic-derived maize.玉米中外源衍生系生育酚的基因组预测。
Plant Genome. 2023 Dec;16(4):e20286. doi: 10.1002/tpg2.20286. Epub 2022 Dec 27.
7
Genomewide predictions from maize single-cross data.基于玉米单交数据的全基因组预测。
Theor Appl Genet. 2013 Jan;126(1):13-22. doi: 10.1007/s00122-012-1955-y. Epub 2012 Aug 11.
10
Genetic architecture of maize kernel row number and whole genome prediction.玉米穗行数的遗传结构与全基因组预测
Theor Appl Genet. 2015 Nov;128(11):2243-54. doi: 10.1007/s00122-015-2581-2. Epub 2015 Jul 19.

引用本文的文献

10
Stochastic simulation to optimize rice breeding at IRRI.国际水稻研究所用于优化水稻育种的随机模拟
Front Plant Sci. 2024 Nov 1;15:1488814. doi: 10.3389/fpls.2024.1488814. eCollection 2024.

本文引用的文献

2
New phenotypes for new breeding goals in dairy cattle.奶牛新选育目标的新表型。
Animal. 2012 Apr;6(4):544-50. doi: 10.1017/S1751731112000018.
9
Genome-based prediction of testcross values in maize.基于基因组的玉米测交值预测。
Theor Appl Genet. 2011 Jul;123(2):339-50. doi: 10.1007/s00122-011-1587-7. Epub 2011 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验