Kik Samantha Keyport, Christopher Dana, Glauninger Hendrik, Hickernell Caitlin Wong, Bard Jared A M, Ford Michael, Sosnick Tobin R, Drummond D Allan
Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL.
bioRxiv. 2023 Jul 29:2023.07.28.551061. doi: 10.1101/2023.07.28.551061.
Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide an unprecedented view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.
细胞必须感知并应对突然出现的适应不良的环境变化——压力——才能生存和繁衍。在整个真核生物中,诸如热休克等压力会触发保守反应:生长停滞、特定的转录反应,以及在严重压力下蛋白质和mRNA生物分子凝聚成称为应激颗粒的结构。这些凝聚结构的组成、形成机制、适应性意义,甚至进化保守性仍然是个谜。在这里,我们以前所未有的视角深入了解应激触发的凝聚、其进化保守性和调控,以及它如何融入应激反应的其他深入研究的方面。我们使用三种形态上几乎相同、适应不同热环境且分化时间长达1亿年的出芽酵母物种,表明蛋白质组规模的生物分子凝聚是根据物种特定的热生态位进行调控的,紧密跟踪相应的生长和转录反应。在每个物种中,聚腺苷酸结合蛋白——应激颗粒的核心标记物——在特定物种的温度下单独凝聚,具有保守的分子特征和调节凝聚的构象变化。从生态到分子尺度,我们的结果揭示了真核生物应激反应中以前未被认识到的进化选择水平,同时建立了一个丰富且易于处理的系统以供进一步探究。