Bhatkar Sayali, Ma Mingyang, Zsolway Mary, Tarafder Ayush, Doniach Sebastian, Bhanot Gyan
Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 40005, India.
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
medRxiv. 2023 Aug 1:2023.07.23.23292960. doi: 10.1101/2023.07.23.23292960.
Within the context of the standard SIR model of pandemics, we show that the asymmetry in the peak in recorded daily cases during a pandemic can be used to infer the pandemic R-parameter. Using only daily data for symptomatic, confirmed cases, we derive a universal scaling curve that yields: (i) r, the pandemic R-parameter; (ii) L, the effective latency, the average number of days an infected individual is able to infect others and (iii) , the probability of infection per contact between infected and susceptible individuals. We validate our method using an example and then apply it to estimate these parameters for the first phase of the SARS-Cov-2/Covid-19 pandemic for several countries where there was a well separated peak in identified infected daily cases. The extension of the SIR model developed in this paper differentiates itself from earlier studies in that it provides a simple method to make an a-posteriori estimate of several useful epidemiological parameters, using only data on confirmed, identified cases. Our results are general and can be applied to any pandemic.
在大流行的标准SIR模型背景下,我们表明,大流行期间记录的每日病例峰值的不对称性可用于推断大流行的R参数。仅使用有症状确诊病例的每日数据,我们得出了一条通用标度曲线,该曲线可得出:(i)r,大流行R参数;(ii)L,有效潜伏期,即受感染个体能够感染他人的平均天数;以及(iii)β,受感染个体与易感个体之间每次接触的感染概率。我们通过一个例子验证了我们的方法,然后将其应用于估计几个国家在SARS-CoV-2/新冠疫情第一阶段的这些参数,这些国家的确诊每日病例峰值有明显的分隔。本文开发的SIR模型扩展与早期研究的不同之处在于,它提供了一种简单的方法,仅使用确诊病例的数据对几个有用的流行病学参数进行后验估计。我们的结果具有普遍性,可应用于任何大流行。