Badgurjar Deepak, Huynh Madison, Masters Benjamin, Wuttig Anna
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2023 Aug 16;145(32):17734-17745. doi: 10.1021/jacs.3c04387. Epub 2023 Aug 7.
Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.
对于能量转换、存储以及分子传感至关重要的电荷转移事件发生在带电界面处。传统上,通过分子特定的电极共价连接来实现对界面的合成控制。共价键固有地限制了分子可调电极的范围和潜在稳定性窗口。在此,我们报告了一种合成策略,该策略与电极表面化学无关,能够从分子层面定义带电界面。我们将二茂铁氧化还原报告基团附加到两亲分子上,利用非共价静电和范德华相互作用制备了在2.9 V范围内稳定的自组装层。该层的伏安响应和红外光谱与报道的类似共价结合二茂铁的情况相似。这种设计与电极无关;层的自组装是可逆的,并且与底层电极材料的表面化学无关。我们证明该设计可应用于广泛的电极材料类别(过渡金属、碳、碳复合材料)和形态(纳米结构、平面)。通过将两亲分子的原子精确有机合成与极化电极上的非共价自组装相结合,我们的工作为对带电界面进行预测性和无污垢的合成控制奠定了基础。