Viduani Anna, Cosenza Victor, Fisher Helen L, Buchweitz Claudia, Piccin Jader, Pereira Rivka, Kohrt Brandon A, Mondelli Valeria, van Heerden Alastair, Araújo Ricardo Matsumura, Kieling Christian
Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
JMIR Hum Factors. 2023 Aug 7;10:e44388. doi: 10.2196/44388.
Mental health status assessment is mostly limited to clinical or research settings, but recent technological advances provide new opportunities for measurement using more ecological approaches. Leveraging apps already in use by individuals on their smartphones, such as chatbots, could be a useful approach to capture subjective reports of mood in the moment.
This study aimed to describe the development and implementation of the Identifying Depression Early in Adolescence Chatbot (IDEABot), a WhatsApp-based tool designed for collecting intensive longitudinal data on adolescents' mood.
The IDEABot was developed to collect data from Brazilian adolescents via WhatsApp as part of the Identifying Depression Early in Adolescence Risk Stratified Cohort (IDEA-RiSCo) study. It supports the administration and collection of self-reported structured items or questionnaires and audio responses. The development explored WhatsApp's default features, such as emojis and recorded audio messages, and focused on scripting relevant and acceptable conversations. The IDEABot supports 5 types of interactions: textual and audio questions, administration of a version of the Short Mood and Feelings Questionnaire, unprompted interactions, and a snooze function. Six adolescents (n=4, 67% male participants and n=2, 33% female participants) aged 16 to 18 years tested the initial version of the IDEABot and were engaged to codevelop the final version of the app. The IDEABot was subsequently used for data collection in the second- and third-year follow-ups of the IDEA-RiSCo study.
The adolescents assessed the initial version of the IDEABot as enjoyable and made suggestions for improvements that were subsequently implemented. The IDEABot's final version follows a structured script with the choice of answer based on exact text matches throughout 15 days. The implementation of the IDEABot in 2 waves of the IDEA-RiSCo sample (140 and 132 eligible adolescents in the second- and third-year follow-ups, respectively) evidenced adequate engagement indicators, with good acceptance for using the tool (113/140, 80.7% and 122/132, 92.4% for second- and third-year follow-up use, respectively), low attrition (only 1/113, 0.9% and 1/122, 0.8%, respectively, failed to engage in the protocol after initial interaction), and high compliance in terms of the proportion of responses in relation to the total number of elicited prompts (12.8, SD 3.5; 91% out of 14 possible interactions and 10.57, SD 3.4; 76% out of 14 possible interactions, respectively).
The IDEABot is a frugal app that leverages an existing app already in daily use by our target population. It follows a simple rule-based approach that can be easily tested and implemented in diverse settings and possibly diminishes the burden of intensive data collection for participants by repurposing WhatsApp. In this context, the IDEABot appears as an acceptable and potentially scalable tool for gathering momentary information that can enhance our understanding of mood fluctuations and development.
心理健康状况评估大多局限于临床或研究环境,但最近的技术进步为采用更具生态性的方法进行测量提供了新机会。利用个人智能手机上已在使用的应用程序,如聊天机器人,可能是一种有用的方法,可以随时获取情绪的主观报告。
本研究旨在描述青少年早期抑郁症识别聊天机器人(IDEABot)的开发与实施,这是一种基于WhatsApp的工具,旨在收集青少年情绪的密集纵向数据。
IDEABot是作为青少年早期抑郁症识别风险分层队列(IDEA-RiSCo)研究的一部分而开发的,用于通过WhatsApp从巴西青少年收集数据。它支持自我报告的结构化项目或问卷以及音频回复的管理和收集。开发过程探索了WhatsApp的默认功能,如表情符号和录制的音频消息,并专注于编写相关且可接受的对话脚本。IDEABot支持5种类型的交互:文本和音频问题、简短情绪与感受问卷版本的管理、无提示交互以及暂停功能。6名年龄在16至18岁的青少年(n = 4,67%为男性参与者;n = 2,33%为女性参与者)测试了IDEABot的初始版本,并参与共同开发该应用程序的最终版本。随后,IDEABot被用于IDEA-RiSCo研究的第二年和第三年随访的数据收集。
青少年认为IDEABot的初始版本很有趣,并提出了改进建议,这些建议随后得到了实施。IDEABot的最终版本遵循结构化脚本,在15天内根据精确的文本匹配来选择答案。IDEABot在IDEA-RiSCo样本的两轮测试中(第二年随访有140名符合条件的青少年,第三年随访有132名)的实施证明了足够的参与指标,该工具的接受度良好(第二年随访使用为113/140,80.7%;第三年随访使用为122/132,92.4%),损耗率低(初始交互后分别只有1/113,0.9%和1/·122,0.8%未参与协议),并且在回复与引发提示总数的比例方面合规性高(分别为12.8,标准差3.5;14种可能交互中的91%和10.57,标准差3.4;14种可能交互中的76%)。
IDEABot是一款节俭的应用程序,它利用了目标人群日常已经在使用的现有应用程序。它遵循一种简单的基于规则的方法,易于在不同环境中进行测试和实施,并且通过重新利用WhatsApp可能减轻参与者密集数据收集的负担。在这种背景下·,IDEABot似乎是一种可接受且可能具有可扩展性的工具,用于收集瞬间信息,这可以增强我们对情绪波动和发展的理解。