Suppr超能文献

识别青少年抑郁的个体驱动因素:基于智能手机的生态瞬时评估和被动感知研究方案。

Identifying Person-Specific Drivers of Depression in Adolescents: Protocol for a Smartphone-Based Ecological Momentary Assessment and Passive Sensing Study.

机构信息

Department of Psychology and Center for Children and Families, Florida International University, Miami, FL, United States.

Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.

出版信息

JMIR Res Protoc. 2024 Jul 16;13:e43931. doi: 10.2196/43931.

Abstract

BACKGROUND

Adolescence is marked by an increasing risk of depression and is an optimal window for prevention and early intervention. Personalizing interventions may be one way to maximize therapeutic benefit, especially given the marked heterogeneity in depressive presentations. However, empirical evidence that can guide personalized intervention for youth is lacking. Identifying person-specific symptom drivers during adolescence could improve outcomes by accounting for both developmental and individual differences.

OBJECTIVE

This study leverages adolescents' everyday smartphone use to investigate person-specific drivers of depression and validate smartphone-based mobile sensing data against established ambulatory methods. We describe the methods of this study and provide an update on its status. After data collection is completed, we will address three specific aims: (1) identify idiographic drivers of dynamic variability in depressive symptoms, (2) test the validity of mobile sensing against ecological momentary assessment (EMA) and actigraphy for identifying these drivers, and (3) explore adolescent baseline characteristics as predictors of these drivers.

METHODS

A total of 50 adolescents with elevated symptoms of depression will participate in 28 days of (1) smartphone-based EMA assessing depressive symptoms, processes, affect, and sleep; (2) mobile sensing of mobility, physical activity, sleep, natural language use in typed interpersonal communication, screen-on time, and call frequency and duration using the Effortless Assessment of Risk States smartphone app; and (3) wrist actigraphy of physical activity and sleep. Adolescents and caregivers will complete developmental and clinical measures at baseline, as well as user feedback interviews at follow-up. Idiographic, within-subject networks of EMA symptoms will be modeled to identify each adolescent's person-specific drivers of depression. Correlations among EMA, mobile sensor, and actigraph measures of sleep, physical, and social activity will be used to assess the validity of mobile sensing for identifying person-specific drivers. Data-driven analyses of mobile sensor variables predicting core depressive symptoms (self-reported mood and anhedonia) will also be used to assess the validity of mobile sensing for identifying drivers. Finally, between-subject baseline characteristics will be explored as predictors of person-specific drivers.

RESULTS

As of October 2023, 84 families were screened as eligible, of whom 70% (n=59) provided informed consent and 46% (n=39) met all inclusion criteria after completing baseline assessment. Of the 39 included families, 85% (n=33) completed the 28-day smartphone and actigraph data collection period and follow-up study visit.

CONCLUSIONS

This study leverages depressed adolescents' everyday smartphone use to identify person-specific drivers of adolescent depression and to assess the validity of mobile sensing for identifying these drivers. The findings are expected to offer novel insights into the structure and dynamics of depressive symptomatology during a sensitive period of development and to inform future development of a scalable, low-burden smartphone-based tool that can guide personalized treatment decisions for depressed adolescents.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/43931.

摘要

背景

青春期是抑郁症风险增加的标志,也是预防和早期干预的最佳窗口。个性化干预可能是最大限度发挥治疗效果的一种方法,尤其是考虑到抑郁表现的明显异质性。然而,缺乏能够指导青少年个性化干预的实证证据。在青春期识别特定个体的症状驱动因素,可以通过考虑发育和个体差异来改善结果。

目的

本研究利用青少年日常使用智能手机的情况,调查抑郁的特定个体驱动因素,并验证基于智能手机的移动传感数据与既定的动态评估方法的有效性。我们描述了这项研究的方法,并提供了其最新进展。在数据收集完成后,我们将解决三个具体目标:(1)确定抑郁症状动态变化的个体驱动因素;(2)测试移动传感在识别这些驱动因素方面与生态瞬时评估(EMA)和活动记录仪的有效性;(3)探索青少年基线特征作为这些驱动因素的预测指标。

方法

共有 50 名有抑郁症状升高的青少年将参加 28 天的研究:(1)基于智能手机的 EMA 评估抑郁症状、过程、情绪和睡眠;(2)使用 Effortless Assessment of Risk States 智能手机应用程序移动感应移动性、身体活动、睡眠、人际交流中的自然语言使用、屏幕开启时间和通话频率及持续时间;(3)手腕活动记录仪记录身体活动和睡眠。青少年及其照顾者将在基线时完成发育和临床测量,以及在随访时完成用户反馈访谈。将对 EMA 症状的个体内网络进行建模,以确定每个青少年的特定个体抑郁驱动因素。将 EMA、移动传感器和活动记录仪测量的睡眠、身体和社交活动之间的相关性用于评估移动传感器识别特定个体驱动因素的有效性。还将使用移动传感器变量对核心抑郁症状(自我报告的情绪和快感缺失)的预测数据进行分析,以评估移动传感器识别驱动因素的有效性。最后,将探索基线特征作为特定个体驱动因素的预测指标。

结果

截至 2023 年 10 月,共筛选出 84 个符合条件的家庭,其中 70%(n=59)提供了知情同意,完成基线评估后,46%(n=39)符合所有纳入标准。在 39 个符合条件的家庭中,85%(n=33)完成了 28 天的智能手机和活动记录仪数据收集期和随访研究访问。

结论

本研究利用抑郁青少年日常使用的智能手机,确定青少年抑郁的特定个体驱动因素,并评估移动传感器识别这些驱动因素的有效性。研究结果有望为敏感发育时期的抑郁症状结构和动态提供新的见解,并为未来开发一种可扩展的、低负担的基于智能手机的工具提供信息,该工具可以为抑郁青少年的个性化治疗决策提供指导。

国际注册报告标识符(IRRID):DERR1-10.2196/43931。

相似文献

本文引用的文献

3
Understanding adolescent stress during the COVID-19 pandemic.了解 COVID-19 大流行期间青少年的压力。
Curr Opin Psychol. 2023 Aug;52:101646. doi: 10.1016/j.copsyc.2023.101646. Epub 2023 Jun 21.
10
On the Control of Psychological Networks.心理网络的控制。
Psychometrika. 2022 Mar;87(1):188-213. doi: 10.1007/s11336-021-09796-9. Epub 2021 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验