Suppr超能文献

序列时间网络上的进化动力学。

Evolutionary dynamics on sequential temporal networks.

机构信息

Center for Systems and Control, College of Engineering, Peking University, Beijing, China.

Department of Biology, University of Pennsylvania, Philadelphia, United States of America.

出版信息

PLoS Comput Biol. 2023 Aug 7;19(8):e1011333. doi: 10.1371/journal.pcbi.1011333. eCollection 2023 Aug.

Abstract

Population structure is a well-known catalyst for the evolution of cooperation and has traditionally been considered to be static in the course of evolution. Conversely, real-world populations, such as microbiome communities and online social networks, frequently show a progression from tiny, active groups to huge, stable communities, which is insufficient to be captured by constant structures. Here, we propose sequential temporal networks to characterize growing networked populations, and we extend the theory of evolutionary games to these temporal networks with arbitrary structures and growth rules. We derive analytical rules under which a sequential temporal network has a higher fixation probability for cooperation than its static counterpart. Under neutral drift, the rule is simply a function of the increment of nodes and edges in each time step. But if the selection is weak, the rule is related to coalescence times on networks. In this case, we propose a mean-field approximation to calculate fixation probabilities and critical benefit-to-cost ratios with lower calculation complexity. Numerical simulations in empirical datasets also prove the cooperation-promoting effect of population growth. Our research stresses the significance of population growth in the real world and provides a high-accuracy approximation approach for analyzing the evolution in real-life systems.

摘要

人口结构是合作进化的一个众所周知的催化剂,传统上被认为在进化过程中是静态的。相反,现实世界中的人口,如微生物组群落和在线社交网络,经常表现出从微小、活跃的群体向巨大、稳定的社区的发展,这不足以用恒定的结构来捕捉。在这里,我们提出了顺序时间网络来描述不断增长的网络人口,并将进化博弈论扩展到具有任意结构和增长规则的这些时间网络。我们推导出了在什么条件下,一个顺序时间网络比其静态对应物具有更高的合作固定概率的解析规则。在中性漂移的情况下,这个规则只是每个时间步中节点和边的增量的函数。但是如果选择是弱的,那么这个规则与网络上的合并时间有关。在这种情况下,我们提出了一种均值场近似来计算固定概率和临界收益-成本比,计算复杂度较低。对经验数据集的数值模拟也证明了种群增长对合作的促进作用。我们的研究强调了人口增长在现实世界中的重要性,并提供了一种高精度的近似方法来分析现实系统中的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d3/10434888/1cb80d9c945c/pcbi.1011333.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验