Suppr超能文献

普适标度下进化博弈中的困境强度。

Universal scaling for the dilemma strength in evolutionary games.

机构信息

School of Computer and Information Science, Southwest University, Chongqing, 400715, China; Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.

出版信息

Phys Life Rev. 2015 Sep;14:1-30. doi: 10.1016/j.plrev.2015.04.033. Epub 2015 May 5.

Abstract

Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.

摘要

为什么自然选择会有利于自私个体群体内部合作的盛行?一个富有成效的解决这个问题的框架是进化博弈论,其本质可以用所谓的社会困境来捕捉。这些困境引发了各种数学方法的发展,以评估合作进化的条件。此外,借鉴统计物理学和网络科学,进化博弈动力学的研究已经丰富了模式形成、平衡选择和自组织等现象。最近,过去几十年对合作行为进化的理解的许多进展已经被提炼成五种互惠机制:直接互惠、间接互惠、亲缘选择、群体选择和网络互惠。然而,当通过任何一种互惠机制在种群中引入社会粘性时,现有的困境强度缩放参数并不能给出一个关于进化动力学应该如何展开的唯一答案。受此问题的启发,我们回顾了导致目前状况的发展,强调了伴随的陷阱,并提出了新的困境强度通用缩放参数。我们通过证明在无限混合的种群中,任何一种互惠机制下,ESS 的条件和内部平衡的表达式都只取决于新的缩放参数,从而证明了普遍性。对于有限混合的种群中不同策略的固定概率,也得出了类似的结果。此外,通过数值模拟,即使在空间网络上考虑合作的进化(除了高度异质的设置),相同的缩放参数也被证明是有效的。最后,我们通过建议有前途的未来研究方向来结束讨论,包括(i)如何在共同进化的背景下处理困境强度,以及(ii)在哪里寻求应用具有实际影响的博弈论方法的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验