Suppr超能文献

时变网络上的演化博弈的确定性理论。

Deterministic theory of evolutionary games on temporal networks.

机构信息

Department of Automation, School of Information Science and Technology, Donghua University , Shanghai 201620, People's Republic of China.

Engineering Research Center of Digitized Textile and Apparel Technology (Ministry of Education), Donghua University , Shanghai 201620, People's Republic of China.

出版信息

J R Soc Interface. 2024 May;21(214):20240055. doi: 10.1098/rsif.2024.0055. Epub 2024 May 29.

Abstract

Recent empirical studies have revealed that social interactions among agents in realistic networks merely exist intermittently and occur in a particular sequential order. However, it remains unexplored how to theoretically describe evolutionary dynamics of multiple strategies on temporal networks. Herein, we develop a deterministic theory for studying evolutionary dynamics of any [Formula: see text] pairwise games in structured populations where individuals are connected and organized by temporally activated edges. In the limit of weak selection, we derive replicator-like equations with a transformed payoff matrix characterizing how the mean frequency of each strategy varies over time, and then obtain critical conditions for any strategy to be evolutionarily stable on temporal networks. Interestingly, the re-scaled payoff matrix is a linear combination of the original payoff matrix with an additional one describing local competitions between any pair of different strategies, whose weights are solely determined by network topology and selection intensity. As a particular example, we apply the deterministic theory to analysing the impacts of temporal networks in the mini-ultimatum game, and find that temporally networked population structures result in the emergence of fairness. Our work offers theoretical insights into the subtle effects of network temporality on evolutionary game dynamics.

摘要

最近的实证研究揭示了现实网络中主体之间的社会互动仅仅是间歇性存在的,并按照特定的顺序发生。然而,如何从理论上描述时变网络上多种策略的演化动态仍然是一个未被探索的问题。在这里,我们为研究结构群体中任何 [Formula: see text] 二人对策的演化动态发展了一个确定性理论,其中个体通过时变激活的边连接和组织。在弱选择极限下,我们推导出了类似于复制者的方程,其中有一个转换后的收益矩阵,用于描述每个策略的平均频率随时间的变化,然后得到了任何策略在时变网络上具有进化稳定性的临界条件。有趣的是,重新缩放的收益矩阵是原始收益矩阵与描述任何两个不同策略之间局部竞争的额外矩阵的线性组合,其权重仅由网络拓扑结构和选择强度决定。作为一个特定的例子,我们将确定性理论应用于分析时变网络对迷你最后通牒博弈的影响,发现时变网络的群体结构导致公平的出现。我们的工作为网络时变性对演化博弈动态的微妙影响提供了理论见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a787/11286197/a7ba1c915dd4/rsif.2024.0055.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验