Suppr超能文献

可解释人工智能在光学相干断层扫描中对多发性硬化症的计算机辅助诊断的应用与可信度。

Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from Optical Coherence Tomography.

机构信息

Computer Science Department, University of Zaragoza, Zaragoza, Spain.

Aragon Institute on Engineering Research, Zaragoza, Spain.

出版信息

PLoS One. 2023 Aug 7;18(8):e0289495. doi: 10.1371/journal.pone.0289495. eCollection 2023.

Abstract

BACKGROUND

Several studies indicate that the anterior visual pathway provides information about the dynamics of axonal degeneration in Multiple Sclerosis (MS). Current research in the field is focused on the quest for the most discriminative features among patients and controls and the development of machine learning models that yield computer-aided solutions widely usable in clinical practice. However, most studies are conducted with small samples and the models are used as black boxes. Clinicians should not trust machine learning decisions unless they come with comprehensive and easily understandable explanations.

MATERIALS AND METHODS

A total of 216 eyes from 111 healthy controls and 100 eyes from 59 patients with relapsing-remitting MS were enrolled. The feature set was obtained from the thickness of the ganglion cell layer (GCL) and the retinal nerve fiber layer (RNFL). Measurements were acquired by the novel Posterior Pole protocol from Spectralis Optical Coherence Tomography (OCT) device. We compared two black-box methods (gradient boosting and random forests) with a glass-box method (explainable boosting machine). Explainability was studied using SHAP for the black-box methods and the scores of the glass-box method.

RESULTS

The best-performing models were obtained for the GCL layer. Explainability pointed out to the temporal location of the GCL layer that is usually broken or thinning in MS and the relationship between low thickness values and high probability of MS, which is coherent with clinical knowledge.

CONCLUSIONS

The insights on how to use explainability shown in this work represent a first important step toward a trustworthy computer-aided solution for the diagnosis of MS with OCT.

摘要

背景

多项研究表明,前视通路提供了多发性硬化症(MS)轴突退变动力学的信息。当前该领域的研究集中于寻找患者和对照之间最具区分度的特征,以及开发能够在临床实践中广泛使用的机器学习模型。然而,大多数研究都是基于小样本进行的,而且这些模型被当作黑箱。除非机器学习决策有全面且易于理解的解释,否则临床医生不应信任这些决策。

材料和方法

共纳入 111 名健康对照者的 216 只眼和 59 名复发缓解型 MS 患者的 100 只眼。特征集来自于神经节细胞层(GCL)和视网膜神经纤维层(RNFL)的厚度。通过 Spectralis 光学相干断层扫描(OCT)设备的新后极协议获取测量值。我们比较了两种黑盒方法(梯度提升和随机森林)和一种玻璃盒方法(可解释提升机)。黑盒方法采用 SHAP 进行可解释性研究,玻璃盒方法采用分数进行可解释性研究。

结果

在 GCL 层获得了性能最佳的模型。可解释性指出了 GCL 层的时间位置,通常在 MS 中会出现破裂或变薄,以及低厚度值与 MS 高概率之间的关系,这与临床知识是一致的。

结论

本工作中展示的关于如何使用可解释性的见解,代表了使用 OCT 诊断 MS 的可信计算机辅助解决方案的重要的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f859/10406231/7e222eb9c951/pone.0289495.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验