Suppr超能文献

基于基线 MRI 的可解释机器学习可预测多发性硬化轨迹描述符。

Explainable machine learning on baseline MRI predicts multiple sclerosis trajectory descriptors.

机构信息

Galicia Sur Health Research Institute (IIS Galicia Sur), Cardiovascular Research Group, Vigo, Spain.

Health Research Institute of Santiago de Compostela (IDIS), Translational Research in Neurological Diseases Group, Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain.

出版信息

PLoS One. 2024 Jul 16;19(7):e0306999. doi: 10.1371/journal.pone.0306999. eCollection 2024.

Abstract

Multiple sclerosis (MS) is a multifaceted neurological condition characterized by challenges in timely diagnosis and personalized patient management. The application of Artificial Intelligence (AI) to MS holds promises for early detection, accurate diagnosis, and predictive modeling. The objectives of this study are: 1) to propose new MS trajectory descriptors that could be employed in Machine Learning (ML) regressors and classifiers to predict patient evolution; 2) to explore the contribution of ML models in discerning MS trajectory descriptors using only baseline Magnetic Resonance Imaging (MRI) studies. This study involved 446 MS patients who had a baseline MRI, at least two measurements of Expanded Disability Status Scale (EDSS), and a 1-year follow-up. Patients were divided into two groups: 1) for model development and 2) for evaluation. Three descriptors: β1, β2, and EDSS(t), were related to baseline MRI parameters using regression and classification XGBoost models. Shapley Additive Explanations (SHAP) analysis enhanced model transparency by identifying influential features. The results of this study demonstrate the potential of AI in predicting MS progression using the proposed patient trajectories and baseline MRI scans, outperforming classic Multiple Linear Regression (MLR) methods. In conclusion, MS trajectory descriptors are crucial; incorporating AI analysis into MRI assessments presents promising opportunities to advance predictive capabilities. SHAP analysis enhances model interpretation, revealing feature importance for clinical decisions.

摘要

多发性硬化症(MS)是一种多方面的神经疾病,其特点是诊断及时性和患者个体化管理方面存在挑战。人工智能(AI)在 MS 中的应用有望实现早期检测、准确诊断和预测建模。本研究的目的是:1)提出新的 MS 轨迹描述符,可用于机器学习(ML)回归器和分类器以预测患者的演变;2)探索仅使用基线磁共振成像(MRI)研究来区分 MS 轨迹描述符的 ML 模型的贡献。本研究涉及 446 名 MS 患者,他们均进行了基线 MRI 检查,至少进行了两次扩展残疾状况量表(EDSS)测量,并进行了 1 年随访。患者被分为两组:1)用于模型开发,2)用于评估。使用回归和分类 XGBoost 模型,将三个描述符:β1、β2 和 EDSS(t)与基线 MRI 参数相关联。Shapley 加法解释(SHAP)分析通过识别有影响力的特征来提高模型的透明度。这项研究的结果表明,使用提出的患者轨迹和基线 MRI 扫描来预测 MS 进展,AI 具有很大的潜力,优于经典的多元线性回归(MLR)方法。总之,MS 轨迹描述符至关重要;将 AI 分析纳入 MRI 评估为提高预测能力提供了有前途的机会。SHAP 分析增强了模型解释,揭示了特征对临床决策的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac67/11251627/f9f588576462/pone.0306999.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验