Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007 Lyon, France.
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2211855120. doi: 10.1073/pnas.2211855120. Epub 2023 Aug 7.
The spatial segregation of pericentromeric heterochromatin (PCH) into distinct, membrane-less nuclear compartments involves the binding of Heterochromatin Protein 1 (HP1) to H3K9me2/3-rich genomic regions. While HP1 exhibits liquid-liquid phase separation properties in vitro, its mechanistic impact on the structure and dynamics of PCH condensate formation in vivo remains largely unresolved. Here, using a minimal theoretical framework, we systematically investigate the mutual coupling between self-interacting HP1-like molecules and the chromatin polymer. We reveal that the specific affinity of HP1 for H3K9me2/3 loci facilitates coacervation in nucleo and promotes the formation of stable PCH condensates at HP1 levels far below the concentration required to observe phase separation in purified protein assays in vitro. These heterotypic HP1-chromatin interactions give rise to a strong dependence of the nucleoplasmic HP1 density on HP1-H3K9me2/3 stoichiometry, consistent with the thermodynamics of multicomponent phase separation. The dynamical cross talk between HP1 and the viscoelastic chromatin scaffold also leads to anomalously slow equilibration kinetics, which strongly depend on the genomic distribution of H3K9me2/3 domains and result in the coexistence of multiple long-lived, microphase-separated PCH compartments. The morphology of these complex coacervates is further found to be governed by the dynamic establishment of the underlying H3K9me2/3 landscape, which may drive their increasingly abnormal, aspherical shapes during cell development. These findings compare favorably to 4D microscopy measurements of HP1 condensate formation in live embryos and suggest a general quantitative model of PCH formation based on the interplay between HP1-based phase separation and chromatin polymer mechanics.
着丝粒区异染色质(PCH)的空间隔离成不同的、无膜核区室,涉及异染色质蛋白 1(HP1)与富含 H3K9me2/3 的基因组区域结合。虽然 HP1 在体外表现出液-液相分离特性,但它对体内 PCH 凝聚形成的结构和动力学的机械影响在很大程度上仍未解决。在这里,我们使用一个最小的理论框架,系统地研究了自相互作用的 HP1 样分子和染色质聚合物之间的相互耦合。我们揭示了 HP1 对 H3K9me2/3 基因座的特异性亲和力促进了核内共凝聚,并在 HP1 水平下促进了稳定的 PCH 凝聚的形成,而在体外纯化蛋白测定中观察到相分离所需的浓度要低得多。这些异质 HP1-染色质相互作用导致核质中 HP1 密度强烈依赖于 HP1-H3K9me2/3 化学计量比,与多组分相分离的热力学一致。HP1 和粘弹性染色质支架之间的动态交叉对话也导致异常缓慢的平衡动力学,这强烈依赖于 H3K9me2/3 结构域的基因组分布,并导致多个长寿命、微相分离的 PCH 区室共存。这些复杂凝聚体的形态还进一步发现受底层 H3K9me2/3 景观的动态建立控制,这可能在细胞发育过程中导致它们的形状越来越异常、非球形。这些发现与活胚胎中 HP1 凝聚形成的 4D 显微镜测量结果相当,并提出了一种基于 HP1 相分离和染色质聚合物力学相互作用的 PCH 形成的一般定量模型。