Suppr超能文献

锰的生物氧化过程同时去除抗生素并减轻耐药性诱导。

Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process.

机构信息

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.

Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States.

出版信息

Water Res. 2023 Oct 1;244:120442. doi: 10.1016/j.watres.2023.120442. Epub 2023 Aug 2.

Abstract

Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.

摘要

微生物降解去除废水中残留抗生素的方法越来越受到关注。然而,抗生素的生物处理可能会通过突变和抗生素抗性基因(ARGs)的水平基因转移(HGT)引起抗性传播。在这项研究中,一种锰(Ⅱ)氧化菌(MnOB),铜绿假单胞菌 MQ2,同时降解抗生素,减少 HGT,并减轻抗生素抗性突变。在锰氧化过程中细胞内 Mn(II) 水平增加,生物锰氧化物(BioMnOx,包括 Mn(II)、Mn(III)和 Mn(IV))紧密包裹在细胞表面。Mn(II)生物氧化通过减少接合转移和突变分别减轻了来自大肠杆菌 ARG 供体的抗生素抗性获得和抗生素抗性诱导。BioMnOx 还分别氧化环丙沙星(1 mg/L)和四环素(5 mg/L),在 24 小时内分别去除了 93%和 96%。转录组分析表明,两个新的多铜氧化酶和一个过氧化物酶基因参与了 Mn(II)氧化。SOS 反应、多药耐药和 IV 型分泌系统相关基因的下调解释了 Mn(II)和 BioMnOx 通过减轻氧化应激减少 HGT 和减轻抗性突变的原因,这使得受体细胞更容易获得 ARG 和突变。构建了一个基于锰生物氧化的反应器,在 4 小时水力停留时间内,四环素以环境浓度完全去除。总的来说,这项研究表明,Mn(Ⅱ)生物氧化过程可以被用来控制抗生素污染,并减轻水处理过程中的抗性传播。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验