Suppr超能文献

外源性化学物质能否支持 Mn(II)-氧化菌 (MnOB) 的生长?以苯酚利用菌 Pseudomonas sp. AN-1 为例。

Can xenobiotics support the growth of Mn(II)-oxidizing bacteria (MnOB)? A case of phenol-utilizing bacteria Pseudomonas sp. AN-1.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

出版信息

J Hazard Mater. 2024 May 5;469:134095. doi: 10.1016/j.jhazmat.2024.134095. Epub 2024 Mar 20.

Abstract

Biogenic manganese oxides (BioMnO) produced by Mn(II)-oxidizing bacteria (MnOB) have garnered considerable attention for their exceptional adsorption and oxidation capabilities. However, previous studies have predominantly focused on the role of BioMnOx, neglecting substantial investigation into MnOB themselves. Meanwhile, whether the xenobiotics could support the growth of MnOB as the sole carbon source remains uncertain. In this study, we isolated a strain termed Pseudomonas sp. AN-1, capable of utilizing phenol as the sole carbon source. The degradation of phenol took precedence over the accumulation of BioMnOx. In the presence of 100 mg L phenol and 100 µM Mn(II), phenol was entirely degraded within 20 h, while Mn(II) was completely oxidized within 30 h. However, at the higher phenol concentration (500 mg L), phenol degradation reduced to 32% and Mn(II) oxidation did not appear to occur. TOC determination confirmed the ability of strain AN-1 to mineralize phenol. Based on the genomic and proteomics studies, the Mn(II) oxidation and phenol mineralization mechanism of strain AN-1 was further confirmed. Proteome analysis revealed down-regulation of proteins associated with Mn(II) oxidation, including MnxG and McoA, with increasing phenol concentration. Notably, this study observed for the first time that the expression of Mn(II) oxidation proteins is modulated by the concentration of carbon sources. This work provides new insight into the interaction between xenobiotics and MnOB, thus revealing the complexity of biogeochemical cycles of Mn and C.

摘要

生物成因的锰氧化物(BioMnO)由 Mn(II) 氧化菌(MnOB)产生,因其具有出色的吸附和氧化能力而备受关注。然而,先前的研究主要集中在 BioMnOx 的作用上,而对 MnOB 本身的研究却相对较少。同时,外源性物质是否可以作为唯一的碳源来支持 MnOB 的生长也尚未可知。在本研究中,我们分离到一株能够利用苯酚作为唯一碳源的假单胞菌,命名为 Pseudomonas sp. AN-1。苯酚的降解优先于 BioMnOx 的积累。在 100mg/L 苯酚和 100µM Mn(II)的条件下,20h 内可完全降解苯酚,30h 内可完全氧化 Mn(II)。然而,当苯酚浓度较高(500mg/L)时,苯酚的降解率降低至 32%,且 Mn(II)的氧化似乎并未发生。总有机碳(TOC)的测定证实了菌株 AN-1 能够矿化苯酚。基于基因组和蛋白质组学研究,进一步证实了菌株 AN-1 氧化 Mn(II)和矿化苯酚的机制。蛋白质组分析显示,随着苯酚浓度的增加,与 Mn(II)氧化相关的蛋白 MnxG 和 McoA 的表达下调。值得注意的是,本研究首次观察到,碳源浓度可以调节 Mn(II)氧化蛋白的表达。这项工作为外源性物质与 MnOB 之间的相互作用提供了新的见解,揭示了 Mn 和 C 的生物地球化学循环的复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验