Suppr超能文献

CT2X-IRA:基于跨域多尺度步长深度强化学习的 CT 到 X 射线图像配准代理。

CT2X-IRA: CT to x-ray image registration agent using domain-cross multi-scale-stride deep reinforcement learning.

机构信息

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

School of Medical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 22;68(17). doi: 10.1088/1361-6560/acede5.

Abstract

In computer-assisted minimally invasive surgery, the intraoperative x-ray image is enhanced by overlapping it with a preoperative CT volume to improve visualization of vital anatomical structures. Therefore, accurate and robust 3D/2D registration of CT volume and x-ray image is highly desired in clinical practices. However, previous registration methods were prone to initial misalignments and struggled with local minima, leading to issues of low accuracy and vulnerability.To improve registration performance, we propose a novel CT/x-ray image registration agent (CT2X-IRA) within a task-driven deep reinforcement learning framework, which contains three key strategies: (1) a multi-scale-stride learning mechanism provides multi-scale feature representation and flexible action step size, establishing fast and globally optimal convergence of the registration task. (2) A domain adaptation module reduces the domain gap between the x-ray image and digitally reconstructed radiograph projected from the CT volume, decreasing the sensitivity and uncertainty of the similarity measurement. (3) A weighted reward function facilitates CT2X-IRA in searching for the optimal transformation parameters, improving the estimation accuracy of out-of-plane transformation parameters under large initial misalignments.We evaluate the proposed CT2X-IRA on both the public and private clinical datasets, achieving target registration errors of 2.13 mm and 2.33 mm with the computation time of 1.5 s and 1.1 s, respectively, showing an accurate and fast workflow for CT/x-ray image rigid registration.The proposed CT2X-IRA obtains the accurate and robust 3D/2D registration of CT and x-ray images, suggesting its potential significance in clinical applications.

摘要

在计算机辅助微创手术中,通过将术中 X 射线图像与术前 CT 体数据集叠加,来增强对重要解剖结构的可视化效果。因此,在临床实践中,非常需要准确且稳健的 CT 体数据集与 X 射线图像的 3D/2D 配准。然而,先前的配准方法容易出现初始配准偏差,并且难以避免局部最小值,导致准确性和鲁棒性低的问题。为了提高配准性能,我们提出了一种新的基于任务驱动的深度强化学习框架下的 CT/X 射线图像配准代理(CT2X-IRA),它包含三个关键策略:(1)多尺度步长学习机制提供多尺度特征表示和灵活的动作步长大小,建立了注册任务的快速全局最优收敛。(2)域自适应模块减少了 X 射线图像和从 CT 体数据集重建的数字射线照片之间的域差距,降低了相似性测量的敏感性和不确定性。(3)加权奖励函数有助于 CT2X-IRA 搜索最优变换参数,提高大初始配准偏差下的离面变换参数的估计精度。我们在公共和私人临床数据集上评估了所提出的 CT2X-IRA,分别达到了 2.13mm 和 2.33mm 的目标配准误差,计算时间分别为 1.5s 和 1.1s,展示了 CT/X 射线图像刚性配准的准确和快速工作流程。所提出的 CT2X-IRA 实现了 CT 和 X 射线图像的准确和稳健的 3D/2D 配准,表明其在临床应用中具有潜在意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验