Suppr超能文献

PelviNet:一种用于增强骨盆图像配准的协作多智能体卷积网络。

PelviNet: A Collaborative Multi-agent Convolutional Network for Enhanced Pelvic Image Registration.

作者信息

Zakaria Rguibi, Abdelmajid Hajami, Dya Zitouni, Hakim Allali

机构信息

LAVETE Laboratory, Hassan First University, Settat, Morocco.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):957-966. doi: 10.1007/s10278-024-01249-w. Epub 2024 Sep 9.

Abstract

PelviNet introduces a groundbreaking multi-agent convolutional network architecture tailored for enhancing pelvic image registration. This innovative framework leverages shared convolutional layers, enabling synchronized learning among agents and ensuring an exhaustive analysis of intricate 3D pelvic structures. The architecture combines max pooling, parametric ReLU activations, and agent-specific layers to optimize both individual and collective decision-making processes. A communication mechanism efficiently aggregates outputs from these shared layers, enabling agents to make well-informed decisions by harnessing combined intelligence. PelviNet's evaluation centers on both quantitative accuracy metrics and visual representations to elucidate agents' performance in pinpointing optimal landmarks. Empirical results demonstrate PelviNet's superiority over traditional methods, achieving an average image-wise error of 2.8 mm, a subject-wise error of 3.2 mm, and a mean Euclidean distance error of 3.0 mm. These quantitative results highlight the model's efficiency and precision in landmark identification, crucial for medical contexts such as radiation therapy, where exact landmark identification significantly influences treatment outcomes. By reliably identifying critical structures, PelviNet advances pelvic image analysis and offers potential enhancements for broader medical imaging applications, marking a significant step forward in computational healthcare.

摘要

PelviNet引入了一种开创性的多智能体卷积网络架构,专为增强骨盆图像配准而设计。这个创新框架利用共享卷积层,实现智能体之间的同步学习,并确保对复杂的3D骨盆结构进行详尽分析。该架构结合了最大池化、参数化ReLU激活函数和特定智能体层,以优化个体和集体决策过程。一种通信机制有效地聚合这些共享层的输出,使智能体能够通过利用综合智能做出明智的决策。PelviNet的评估集中在定量准确性指标和视觉表示上,以阐明智能体在确定最佳地标方面的性能。实证结果表明,PelviNet优于传统方法,实现了平均图像级误差2.8毫米、个体级误差3.2毫米和平均欧几里得距离误差3.0毫米。这些定量结果突出了该模型在地标识别方面的效率和精度,这对于放射治疗等医疗环境至关重要,因为精确的地标识别会显著影响治疗结果。通过可靠地识别关键结构,PelviNet推动了骨盆图像分析,并为更广泛的医学成像应用提供了潜在的改进,标志着计算医疗保健向前迈出了重要一步。

相似文献

4
Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views.学习从任意视角的 X 光片中检测骨盆的解剖标志。
Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1463-1473. doi: 10.1007/s11548-019-01975-5. Epub 2019 Apr 20.
8
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.

本文引用的文献

4
A review of deep learning-based deformable medical image registration.基于深度学习的可变形医学图像配准综述。
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验