From the Departments of Laboratory Medicine and Pathology and Neurology (A.M., E.P.F., S.J.P., B.Y., A.Z., D.D.); Department of Laboratory Medicine and Pathology (C.L., N.V., M.G., R.L.-C., J.M.); Khon Kaen University (N.V.), Thailand; University of Virginia (M.W.B.); Division of Biomedical Statistics and Informatics (S.D.), Mayo Clinic, Rochester, MN; The Institute for Experimental Immunology (R.M., M.S.), affiliated to Euroimmun AG, Lubeck, Germany.
Neurol Neuroimmunol Neuroinflamm. 2023 Aug 7;10(5). doi: 10.1212/NXI.0000000000200145. Print 2023 Sep.
Neural antibodies are detected by tissue-based indirect immunofluorescence assay (IFA) in Mayo Clinic's Neuroimmunology Laboratory practice, but the process of characterizing and validating novel antibodies is lengthy. We report our assessment of human protein arrays.
Assessment of arrays (81% human proteome coverage) was undertaken using diverse known positive samples (17 serum and 14 CSF). Samples from patients with novel neural antibodies were reflexed from IFA to arrays. Confirmatory assays were cell-based (CBA) or line blot. Epitope mapping was undertaken using phage display immunoprecipitation sequencing (PhiPSeq).
Control positive samples known to be reactive with linear epitopes of intracellular antigens (e.g., ANNA-1 [anti-Hu]) were readily identified by arrays in 20 of 21 samples. By contrast, 10 positive controls known to be enriched with antibodies against cell surface protein conformational epitopes (e.g., GluN1 subunit of NMDA-R) were indistinguishable from background signal. Three antibodies, previously characterized by other investigators (but unclassified in our laboratory), were unmasked in 4 patients using arrays (July-December 2022): Neurexin-3α, 1 patient; regulator of gene protein signaling (RGS)8, 1 patient; and seizure-related homolog like 2 (SEZ6L2), 2 patients. All were accompanied by previously reported phenotypes (encephalitis, 1; cerebellar ataxia, 3). Patient 1 had subacute onset of seizures and encephalopathy. Neurexin-3α ranked high in CSF (second ranked neural protein) but low in serum (660th overall). Neurexin-3α CBA was positive in both samples. Patient 2 presented with rapidly progressive cerebellar ataxia. RGS8 ranked the highest neural protein in available CSF sample by array (third overall). RGS8-specific line blot was positive. Patients 3 and 4 had rapidly progressive cerebellar ataxia. SEZ6L2 was the highest ranked neural antigen by arrays in all samples (CSF, 1, serum, 2; Patient 3, ranked 9th overall in CSF, 11th in serum; Patient 4, 6th overall in serum]). By PhIPSeq, diverse neurexin-3α epitopes (including cell surface) were detected in CSF from patient 1, but no SEZ6L2 peptides were detected for serum or CSF samples from Patient 3.
Individualized autoimmune neurologic diagnoses may be accelerated using protein arrays. They are optimal for detection of intracellular antigen-reactive antibodies, though certain cell surface-directed antibodies (neurexin-3α and SEZ6L2) may also be detected.
在梅奥诊所神经免疫实验室的实践中,通过基于组织的间接免疫荧光分析(IFA)检测神经抗体,但表征和验证新抗体的过程冗长。我们报告了对人类蛋白质阵列的评估。
使用多种已知的阳性样本(17 份血清和 14 份脑脊液)对阵列(覆盖 81%人类蛋白质组)进行评估。从 IFA 到阵列的反射来自具有新型神经抗体的患者的样本。确认检测是基于细胞的(CBA)或线印迹。使用噬菌体展示免疫沉淀测序(PhiPSeq)进行表位作图。
21 个样本中的 20 个样本中,用阵列很容易识别出已知与细胞内抗原线性表位反应的对照阳性样本(例如,抗 Hu 抗体的 ANNA-1)。相比之下,10 个已知富含针对细胞表面蛋白构象表位的抗体的阳性对照(例如,NMDA-R 的 GluN1 亚基)与背景信号无法区分。使用阵列在 4 名患者中揭示了 3 种先前由其他研究人员表征(但在我们实验室中未分类)的抗体(2022 年 7 月至 12 月):神经连接蛋白 3α,1 名患者;调节基因蛋白信号(RGS)8,1 名患者;和与癫痫发作相关的同源物 2(SEZ6L2),2 名患者。所有这些都伴有先前报道的表型(脑炎,1 例;小脑共济失调,3 例)。1 名患者出现亚急性癫痫发作和脑病。神经连接蛋白 3α在脑脊液中的排名很高(第二高的神经蛋白),但在血清中排名较低(总排名第 660 位)。神经连接蛋白 3α 的 CBA 在两个样本中均为阳性。2 名患者表现为快速进展性小脑共济失调。RGS8 在可用的 CSF 样本中是通过阵列排列的最高神经蛋白(总体排名第三)。RGS8 特异性线印迹为阳性。3 名和 4 名患者出现快速进展性小脑共济失调。SEZ6L2 是所有样本中通过阵列排列的最高神经抗原(CSF,1,血清,2;患者 3,在 CSF 中排名第 9,在血清中排名第 11;患者 4,在血清中排名第 6))。通过 PhiPSeq,在患者 1 的脑脊液中检测到了多种神经连接蛋白 3α 表位(包括细胞表面),但在患者 3 的血清或脑脊液样本中未检测到 SEZ6L2 肽。
使用蛋白质阵列可以加速个体化自身免疫性神经病学诊断。它们最适合检测细胞内抗原反应性抗体,尽管某些针对细胞表面的抗体(神经连接蛋白 3α 和 SEZ6L2)也可能被检测到。