Department of Chemistry, Britannia House, King's College London, London SE1 1DB, U.K.
J Am Soc Mass Spectrom. 2023 Sep 6;34(9):1989-1997. doi: 10.1021/jasms.3c00145. Epub 2023 Aug 7.
An original approach that adopts machine learning inference to predict protein structural information using hydrogen-deuterium exchange mass spectrometry (HDX-MS) is described. The method exploits an in-house optimization program that increases the resolution of HDX-MS data from peptides to amino acids. A system is trained using Gradient Tree Boosting as a type of machine learning ensemble technique to assign a protein secondary structure. Using limited training data we generate a discriminative model that uses optimized HDX-MS data to predict protein secondary structure with an accuracy of 75%. This research could form the basis for new methods exploiting artificial intelligence to model protein conformations by HDX-MS.
描述了一种采用机器学习推理的新方法,该方法利用氘氢交换质谱(HDX-MS)来预测蛋白质结构信息。该方法利用内部优化程序,将肽的 HDX-MS 数据分辨率提高到氨基酸水平。系统使用梯度提升树作为一种机器学习集成技术进行训练,以分配蛋白质二级结构。使用有限的训练数据,我们生成了一个判别模型,该模型使用优化的 HDX-MS 数据预测蛋白质二级结构的准确率为 75%。这项研究可以为利用人工智能通过 HDX-MS 对蛋白质构象进行建模的新方法奠定基础。