Tran Minh H, Martina Cristina E, Moretti Rocco, Nagel Marcus, Schey Kevin L, Meiler Jens
Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center of Structural Biology, Vanderbilt University, Nashville, TN, USA.
Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
J Struct Biol. 2025 Mar;217(1):108166. doi: 10.1016/j.jsb.2025.108166. Epub 2025 Jan 5.
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually. By incorporating HDX data as both distance restraints and a scoring term in the RosettaDock algorithm, RosettaHDX successfully generated near-native models (interface root-mean square deviation ≤ 4 Å) for all 9 benchmark complexes examined, averaging 3.6 times more near-native models than Rosetta alone. Near-native models among the top 10 scoring were identified in 3/9 cases, compared to 1/9 with Rosetta alone. Additionally, we developed a predictive metric based on docking results with HDX restraints to identify allosteric peptides in HDX datasets.
在原子水平上对抗体 - 抗原复合物进行高通量表征对于理解抗体功能和推动治疗性开发至关重要。氢 - 氘交换质谱法(HDX-MS)能够快速进行表位图谱分析,但其数据过于稀疏,无法独立确定结构。在本研究中,我们引入了RosettaHDX,这是一种将计算对接与差分HDX-MS数据相结合的混合方法,以提高抗体 - 抗原复合物模型的准确性,超越了任何一种方法单独所能达到的水平。通过将HDX数据作为距离约束和评分项纳入RosettaDock算法中,RosettaHDX成功地为所有9个测试的基准复合物生成了近天然模型(界面均方根偏差≤4 Å),平均生成的近天然模型比单独使用Rosetta多3.6倍。在9个案例中的3个案例中,在前10个评分最高的模型中识别出了近天然模型,而单独使用Rosetta时为9个案例中的1个。此外,我们基于带有HDX约束的对接结果开发了一种预测指标,以识别HDX数据集中的变构肽。