Suppr超能文献

基于计算机断层扫描的胃癌淋巴结转移概率预测模型:荟萃分析。

Computed Tomography-Based Predictive Model for the Probability of Lymph Node Metastasis in Gastric Cancer: A Meta-analysis.

机构信息

From the Department of Interventional Radiology, Ningbo First Hospital, Ningbo.

Department of Radiology, Xuzhou Central Hospital, Xuzhou.

出版信息

J Comput Assist Tomogr. 2024;48(1):19-25. doi: 10.1097/RCT.0000000000001530. Epub 2023 Aug 7.

Abstract

OBJECTIVES

Whether or not a gastric cancer (GC) patient exhibits lymph node metastasis (LNM) is critical to accurately guiding their treatment and prognostic evaluation, necessitating the ability to reliably predict preoperative LNM status. The present meta-analysis sought to examine the diagnostic value of computed tomography (CT)-based predictive models as a tool to gauge the preoperative LNM status of patients with GC.

METHODS

Relevant articles were identified in the PubMed, Web of Science, and Wanfang databases. These studies were used to conduct pooled analyses examining sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) values, and area under the curve values were computed for summary receiver operating characteristic curves.

RESULTS

The final meta-analysis incorporated data from 15 studies, all of which were conducted in China, enrolling 3,817 patients with GC (LNM+: 1790; LNM-: 2027). The developed CT-based predictive model exhibited respective pooled sensitivity, specificity, PLR, and NLR values of 84% (95% confidence interval [CI], 0.79-0.87), 81% (95% CI, 0.76-0.85), 4.39 (95% CI, 3.40-5.67), and 0.20 (95% CI, 0.16-0.26). The identified results were not associated with significant potential for publication bias ( P = 0.071). Similarly, CT-based analyses of LN status exhibited respective pooled sensitivity, specificity, PLR, and NLR values of 62% (95% CI, 0.53-0.70), 77% (95% CI, 0.72-0.81), 2.71 (95% CI, 2.20-3.33), and 0.49 (95% CI, 0.40-0.61), with no significant risk of publication bias ( P = 0.984).

CONCLUSIONS

Overall, the present meta-analysis revealed that a CT-based predictive model may outperform CT-based analyses alone when assessing the preoperative LNM status of patients with GC, offering superior diagnostic utility.

摘要

目的

胃癌(GC)患者是否存在淋巴结转移(LNM)对准确指导治疗和预后评估至关重要,这需要能够可靠地预测术前 LNM 状态。本荟萃分析旨在研究基于计算机断层扫描(CT)的预测模型作为评估 GC 患者术前 LNM 状态的工具的诊断价值。

方法

在 PubMed、Web of Science 和万方数据库中检索相关文章。这些研究用于进行荟萃分析,检查敏感性、特异性、阳性似然比(PLR)和阴性似然比(NLR)值,并计算汇总受试者工作特征曲线下的面积。

结果

最终的荟萃分析纳入了 15 项研究的数据,这些研究均在中国进行,共纳入 3817 例 GC 患者(LNM+:1790 例;LNM-:2027 例)。所开发的基于 CT 的预测模型的汇总敏感性、特异性、PLR 和 NLR 值分别为 84%(95%置信区间[CI],0.79-0.87)、81%(95%CI,0.76-0.85)、4.39(95%CI,3.40-5.67)和 0.20(95%CI,0.16-0.26)。这些结果与发表偏倚的显著潜在风险无关(P=0.071)。同样,基于 CT 的 LN 状态分析的汇总敏感性、特异性、PLR 和 NLR 值分别为 62%(95%CI,0.53-0.70)、77%(95%CI,0.72-0.81)、2.71(95%CI,2.20-3.33)和 0.49(95%CI,0.40-0.61),不存在发表偏倚的显著风险(P=0.984)。

结论

总体而言,本荟萃分析表明,与单独使用 CT 分析相比,基于 CT 的预测模型在评估 GC 患者术前 LNM 状态时可能具有更好的诊断效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验