Pandya Raj, Mathieson Angus, Boruah Buddha Deka, de Aguiar Hilton B, de Volder Michael
Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France.
Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Nano Lett. 2023 Aug 23;23(16):7288-7296. doi: 10.1021/acs.nanolett.3c01148. Epub 2023 Aug 8.
Photobatteries, batteries with a light-sensitive electrode, have recently been proposed as a way of simultaneously capturing and storing solar energy in a single device. Despite reports of photocharging with multiple different electrode materials, the overall mechanism of operation remains poorly understood. Here, we use optical reflection microscopy to investigate light-induced charging in LiVO electrodes. We image the electrode, at the single-particle level, under three conditions: (a) with a closed circuit and light but no electronic power source (photocharging), (b) during galvanostatic cycling with light (photoenhanced), and (c) with heat but no light (thermal). We demonstrate that light can indeed drive lithiation changes in LiVO while maintaining charge neutrality, possibly via a combination of faradaic and nonfaradaic effects taking place in individual particles. Our results provide an addition to the photobattery mechanistic model highlighting that both intercalation-based charging and lithium concentration polarization effects contribute to the increased photocharging capacity.
光电池,即带有光敏电极的电池,最近被提议作为一种在单个装置中同时捕获和存储太阳能的方式。尽管有关于使用多种不同电极材料进行光充电的报道,但整体运行机制仍知之甚少。在这里,我们使用光学反射显微镜来研究LiVO电极中的光诱导充电。我们在三种条件下对电极进行单粒子水平成像:(a) 闭路且有光但无电子电源(光充电),(b) 恒电流循环且有光(光增强),以及 (c) 有热但无光(热)。我们证明光确实可以在保持电荷中性的同时驱动LiVO中的锂化变化,这可能是通过单个粒子中发生的法拉第和非法拉第效应的组合实现的。我们的结果为光电池机理模型增添了内容,突出了基于嵌入的充电和锂浓度极化效应都对增加光充电容量有贡献。