School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
GlycoMar Ltd, Malin House, European Marine Science Park, Oban, Scotland, PA37 1SZ, UK.
Appl Microbiol Biotechnol. 2023 Oct;107(19):6121-6134. doi: 10.1007/s00253-023-12697-9. Epub 2023 Aug 8.
Microorganisms produce extracellular polymeric substances (EPS, also known as exopolysaccharides) of diverse composition and structure. The biochemical and biophysical properties of these biopolymers enable a wide range of industrial applications. EPS from cyanobacteria are particularly versatile as they incorporate a larger number and variety of building blocks and adopt more complex structures than EPS from other organisms. However, the genetic makeup and regulation of EPS biosynthetic pathways in cyanobacteria are poorly understood. Here, we measured the effect of changing culture media on titre and composition of EPS released by Synechocystis sp. PCC 6803, and we integrated this information with transcriptomic data. Across all conditions, daily EPS productivity of individual cells was highest in the early growth phase, but the total amount of EPS obtained from the cultures was highest in the later growth phases due to accumulation. Lowering the magnesium concentration in the media enhanced per-cell productivity but the produced EPS had a lower total sugar content. Levels of individual monosaccharides correlated with specific culture media components, e.g. xylose with sulfur, glucose and N-acetyl-galactosamine with NaCl. Comparison with RNA sequencing data suggests a Wzy-dependent biosynthetic pathway and a protective role for xylose-rich EPS. This multi-level analysis offers a handle to link individual genes to the dynamic modulation of a complex biopolymer. KEY POINTS: • Synechocystis exopolysaccharide amount and composition depends on culture condition • Production rate and sugar content can be modulated by Mg and S respectively • Wzy-dependent biosynthetic pathway and protective role proposed for xylose-rich EPS.
微生物产生具有不同组成和结构的细胞外聚合物质(EPS,也称为胞外多糖)。这些生物聚合物的生化和物理特性使其能够应用于广泛的工业领域。与其他生物体产生的 EPS 相比,蓝藻产生的 EPS 具有更大的多样性和更复杂的结构,因此具有更大的通用性。然而,蓝藻 EPS 生物合成途径的遗传组成和调控机制还了解甚少。在这里,我们测量了改变培养条件对集胞藻 PCC 6803 释放的 EPS 产量和组成的影响,并将这些信息与转录组数据相结合。在所有条件下,单个细胞的 EPS 日生产力在生长早期最高,但由于积累,从培养物中获得的 EPS 总量在生长后期最高。降低培养基中的镁浓度可以提高每个细胞的生产力,但产生的 EPS 总糖含量较低。个别单糖的水平与特定的培养基成分相关,例如木糖与硫,葡萄糖和 N-乙酰半乳糖胺与 NaCl。与 RNA 测序数据的比较表明,Wzy 依赖性生物合成途径和富含木糖的 EPS 的保护作用。这种多层次的分析提供了一种将单个基因与复杂生物聚合物的动态调节联系起来的方法。关键点: • 集胞藻 EPS 的数量和组成取决于培养条件 • Mg 和 S 分别可以调节产量和糖含量 • 提出了富含木糖的 EPS 的 Wzy 依赖性生物合成途径和保护作用。