Garcia Matias, Bruna Pablo, Duran Paola, Abanto Michel
Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 01145, Chile.
Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 01145, Chile.
Microorganisms. 2025 Jun 24;13(7):1468. doi: 10.3390/microorganisms13071468.
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being the only prokaryotes capable of performing oxygenic photosynthesis. Moreover, they can capture atmospheric carbon and nitrogen, release exopolysaccharides (EPSs) that stabilize the soil, and facilitate the development of biological soil crusts (biocrusts). In recent years, the convergence of multi-omics tools, such as metagenomics, metatranscriptomics, and metabolomics, has advanced our understanding of cyanobacterial dynamics, their metabolic potential, and symbiotic interactions with microbial consortia, as exemplified by the cyanosphere of In addition, recent advances in bioinformatics have enabled high-resolution taxonomic and functional profiling of environmental samples, facilitating the identification and prediction of resilient microorganisms suited to challenging degraded soils. These tools also allow for the prediction of biosynthetic gene clusters and the detection of prophages or cyanophages within microbiomes, offering a novel approach to enhance carbon sequestration in dry and nutrient-poor soils. This review synthesizes the latest findings and proposes a roadmap for the translation of molecular-level knowledge into scalable biotechnological strategies for soil restoration. We discuss approaches ranging from the use of native biocrust strains to the exploration of cyanophages with the potential to enhance cyanobacterial photosynthetic activity. By bridging ecological functions with cutting-edge omics technologies, this study highlights the critical role of cyanobacteria as a nature-based solution for climate-smart soil management in degraded and arid ecosystems.
由于气候变化,全球土壤退化正在加速,这对粮食生产、生物多样性和生态系统平衡构成了威胁。传统的土壤修复策略往往成本高昂、进展缓慢或从长期来看不可持续。在这种背景下,蓝细菌已成为有前景的生物技术替代方案,它们是唯一能够进行产氧光合作用的原核生物。此外,它们可以捕获大气中的碳和氮,释放能稳定土壤的胞外多糖(EPSs),并促进生物土壤结皮(生物结皮)的形成。近年来,宏基因组学、宏转录组学和代谢组学等多组学工具的融合,加深了我们对蓝细菌动态、其代谢潜力以及与微生物群落共生相互作用的理解,如[具体名称]的蓝细菌圈所示。此外,生物信息学的最新进展使得能够对环境样本进行高分辨率的分类和功能分析,有助于识别和预测适合具有挑战性的退化土壤的有复原力的微生物。这些工具还可以预测生物合成基因簇,并检测微生物群落中的前噬菌体或蓝噬菌体,为增强干旱和贫瘠土壤中的碳固存提供了一种新方法。本综述综合了最新研究结果,并提出了将分子水平的知识转化为可扩展的土壤修复生物技术策略的路线图。我们讨论了从使用本地生物结皮菌株到探索具有增强蓝细菌光合活性潜力的蓝噬菌体等方法。通过将生态功能与前沿的组学技术相结合,本研究强调了蓝细菌作为退化和干旱生态系统中气候智能型土壤管理的基于自然的解决方案的关键作用。