Suppr超能文献

基于新的术者视角的动脉夹层的数学建模与数值模拟。

Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon's view.

机构信息

Institute of Continuum Mechanics, Leibniz University, Hannover, Germany.

Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medical School, Hannover, Germany.

出版信息

Biomech Model Mechanobiol. 2023 Dec;22(6):2097-2116. doi: 10.1007/s10237-023-01753-y. Epub 2023 Aug 8.

Abstract

This paper presents a mathematical model for arterial dissection based on a novel hypothesis proposed by a surgeon, Axel Haverich, see Haverich (Circulation 135(3):205-207, 2017. https://doi.org/10.1161/circulationaha.116.025407 ). In an attempt and based on clinical observations, he explained how three different arterial diseases, namely atherosclerosis, aneurysm and dissection have the same root in malfunctioning Vasa Vasorums (VVs) which are micro capillaries responsible for artery wall nourishment. The authors already proposed a mathematical framework for the modeling of atherosclerosis which is the thickening of the artery walls due to an inflammatory response to VVs dysfunction. A multiphysics model based on a phase-field approach coupled with mechanical deformation was proposed for this purpose. The kinematics of mechanical deformation was described using finite strain theory. The entire model is three-dimensional and fully based on a macroscopic continuum description. The objective here is to extend that model by incorporating a damage mechanism in order to capture the tearing (rupture) in the artery wall as a result of micro-injuries in VV. Unlike the existing damage-based model of the dissection in the literature, here the damage is driven by the internal bleeding (hematoma) rather than purely mechanical external loading. The numerical implementation is carried out using finite element method (FEM).

摘要

这篇论文提出了一种基于外科医生 Axel Haverich 提出的新假设的动脉夹层数学模型,参见 Haverich(Circulation 135(3):205-207, 2017. https://doi.org/10.1161/circulationaha.116.025407 )。他试图根据临床观察,解释三种不同的动脉疾病,即动脉粥样硬化、动脉瘤和夹层,它们的共同根源在于 Vasa Vasorums(VV)功能障碍,而 VV 是负责动脉壁营养的微血管。作者已经提出了一种用于动脉粥样硬化建模的数学框架,即由于 VV 功能障碍引起的炎症反应导致动脉壁增厚。为此目的,提出了一种基于相场方法的多物理模型,与机械变形相结合。机械变形的运动学使用有限应变理论来描述。整个模型是三维的,完全基于宏观连续体描述。目的是通过引入损伤机制来扩展该模型,以便捕捉 VV 中的微损伤导致的动脉壁撕裂(破裂)。与文献中现有的夹层损伤模型不同,这里的损伤是由内部出血(血肿)驱动的,而不是纯粹的机械外部加载。数值实现使用有限元方法(FEM)进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e26/10613153/4e89470758a1/10237_2023_1753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验