Suppr超能文献

夹层沿主动脉的倾向性差异。

Differential propensity of dissection along the aorta.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.

出版信息

Biomech Model Mechanobiol. 2021 Jun;20(3):895-907. doi: 10.1007/s10237-021-01418-8. Epub 2021 Jan 19.

Abstract

Aortic dissections progress, in part, by delamination of the wall. Previous experiments on cut-open segments of aorta demonstrated that fluid injected within the wall delaminates the aorta in two distinct modes: stepwise progressive tearing in the abdominal aorta and a more prevalent sudden mode of tearing in the thoracic aorta that can also manifest in other regions. A microstructural understanding that delineates these two modes of tearing has remained wanting. We implemented a phase-field finite-element model of the aortic wall, motivated in part by two-photon imaging, and found correlative relations for the maximum pressure prior to tearing as a function of local geometry and material properties. Specifically, the square of the pressure of tearing relates directly to both tissue stiffness and the critical energy of tearing and inversely to the square root of the torn area; this correlation explains the sudden mode of tearing and, with the microscopy, suggests a mechanism for progressive tearing. Microscopy also confirmed that thick interlamellar radial struts are more abundant in the abdominal region of the aorta, where progressive tearing was observed previously. The computational results suggest that structurally significant radial struts increase tearing pressure by two mechanisms: confining the fluid by acting as barriers to flow and increasing tissue stiffness by holding the adjacent lamellae together. Collectively, these two phase-field models provide new insights into the mechanical factors that can influence intramural delaminations that promote aortic dissection.

摘要

主动脉夹层的进展部分是通过壁的分层。以前在切开的主动脉段进行的实验表明,在壁内注射的流体以两种不同的方式使主动脉分层:在腹主动脉中逐步进行渐进撕裂,在胸主动脉中更为常见的突然撕裂模式,也可能在其他区域表现出来。一种能够描述这两种撕裂模式的微观结构理解仍然存在。我们实施了一种基于双光子成像的主动脉壁相场有限元模型,并发现了撕裂前最大压力与局部几何形状和材料特性之间的相关关系。具体来说,撕裂压力的平方与组织刚度和撕裂临界能量直接相关,与撕裂面积的平方根成反比;这种相关性解释了突然撕裂模式,并结合显微镜观察,提出了渐进撕裂的机制。显微镜还证实,在先前观察到渐进撕裂的主动脉腹部区域,层间径向厚支柱更为丰富。计算结果表明,结构上重要的径向支柱通过两种机制增加撕裂压力:通过作为流动障碍来限制流体,并通过将相邻的薄片保持在一起来增加组织刚度。总的来说,这两个相场模型为影响促进主动脉夹层的壁内分层的机械因素提供了新的见解。

相似文献

1
Differential propensity of dissection along the aorta.
Biomech Model Mechanobiol. 2021 Jun;20(3):895-907. doi: 10.1007/s10237-021-01418-8. Epub 2021 Jan 19.
2
Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network.
J R Soc Interface. 2022 Feb;19(187):20210670. doi: 10.1098/rsif.2021.0670. Epub 2022 Feb 9.
3
Critical Pressure of Intramural Delamination in Aortic Dissection.
Ann Biomed Eng. 2022 Feb;50(2):183-194. doi: 10.1007/s10439-022-02906-3. Epub 2022 Jan 19.
4
Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
Biomech Model Mechanobiol. 2021 Feb;20(1):93-106. doi: 10.1007/s10237-020-01370-z. Epub 2020 Jul 23.
5
Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection.
Comput Biol Med. 2017 Oct 1;89:236-247. doi: 10.1016/j.compbiomed.2017.07.029. Epub 2017 Aug 1.
6
The role of radial elastic properties in the development of aortic dissections.
J Vasc Surg. 1999 Apr;29(4):703-10. doi: 10.1016/s0741-5214(99)70317-4.
7
Experimental and numerical studies of two arterial wall delamination modes.
J Mech Behav Biomed Mater. 2018 Jan;77:321-330. doi: 10.1016/j.jmbbm.2017.09.025. Epub 2017 Sep 19.

引用本文的文献

1
Dissection Propagation via Avalanches in Human Descending Thoracic Aorta: Effect of Aging.
Acta Biomater. 2025 Jun 27. doi: 10.1016/j.actbio.2025.06.056.
2
Mechanisms of aortic dissection: From pathological changes to experimental and models.
Prog Mater Sci. 2025 Apr;150. doi: 10.1016/j.pmatsci.2024.101363. Epub 2024 Sep 12.
3
Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon's view.
Biomech Model Mechanobiol. 2023 Dec;22(6):2097-2116. doi: 10.1007/s10237-023-01753-y. Epub 2023 Aug 8.
4
Finite-element simulation of in-plane tear propagation in the dissected aorta: Implications for the propagation mechanism.
Int J Numer Method Biomed Eng. 2023 Sep;39(9):e3743. doi: 10.1002/cnm.3743. Epub 2023 Jun 21.
5
Evolving Mural Defects, Dilatation, and Biomechanical Dysfunction in Angiotensin II-Induced Thoracic Aortopathies.
Arterioscler Thromb Vasc Biol. 2022 Aug;42(8):973-986. doi: 10.1161/ATVBAHA.122.317394. Epub 2022 Jun 30.
6
Gender differences in the dissection properties of ascending thoracic aortic aneurysms.
Interact Cardiovasc Thorac Surg. 2022 Jul 9;35(2). doi: 10.1093/icvts/ivac068.
7
Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network.
J R Soc Interface. 2022 Feb;19(187):20210670. doi: 10.1098/rsif.2021.0670. Epub 2022 Feb 9.
8
Critical Pressure of Intramural Delamination in Aortic Dissection.
Ann Biomed Eng. 2022 Feb;50(2):183-194. doi: 10.1007/s10439-022-02906-3. Epub 2022 Jan 19.

本文引用的文献

1
Mechanics-driven mechanobiological mechanisms of arterial tortuosity.
Sci Adv. 2020 Dec 4;6(49). doi: 10.1126/sciadv.abd3574. Print 2020 Dec.
2
Avalanches and power law behavior in aortic dissection propagation.
Sci Adv. 2020 May 22;6(21):eaaz1173. doi: 10.1126/sciadv.aaz1173. eCollection 2020 May.
3
Modeling lamellar disruption within the aortic wall using a particle-based approach.
Sci Rep. 2019 Oct 25;9(1):15320. doi: 10.1038/s41598-019-51558-2.
4
Unfolding the Story of Proteoglycan Accumulation in Thoracic Aortic Aneurysm and Dissection.
Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):1899-1901. doi: 10.1161/ATVBAHA.119.313279. Epub 2019 Sep 25.
5
Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review.
Acta Biomater. 2019 Nov;99:1-17. doi: 10.1016/j.actbio.2019.08.017. Epub 2019 Aug 13.
6
Computational modeling of progressive damage and rupture in fibrous biological tissues: application to aortic dissection.
Biomech Model Mechanobiol. 2019 Dec;18(6):1607-1628. doi: 10.1007/s10237-019-01164-y. Epub 2019 May 15.
7
8
Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection.
JCI Insight. 2018 Mar 8;3(5):97167. doi: 10.1172/jci.insight.97167.
9
Aortic dissection.
Nat Rev Dis Primers. 2016 Jul 21;2:16053. doi: 10.1038/nrdp.2016.53.
10
Propagation of dissection in a residually-stressed artery model.
Biomech Model Mechanobiol. 2017 Feb;16(1):139-149. doi: 10.1007/s10237-016-0806-1. Epub 2016 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验