Suppr超能文献

解析血管紧张素 II 型 1 受体与 Gα 和 β-arrestin 偶联的变构机制。

Unraveling allostery within the angiotensin II type 1 receptor for Gα and β-arrestin coupling.

机构信息

Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.

出版信息

Sci Signal. 2023 Aug 8;16(797):eadf2173. doi: 10.1126/scisignal.adf2173.

Abstract

G protein-coupled receptors engage both G proteins and β-arrestins, and their coupling can be biased by ligands and mutations. Here, to resolve structural elements and mechanisms underlying effector coupling to the angiotensin II (AngII) type 1 receptor (AT1R), we combined alanine scanning mutagenesis of the entire sequence of the receptor with pharmacological profiling of Gα and β-arrestin engagement to mutant receptors and molecular dynamics simulations. We showed that Gα coupling to AT1R involved a large number of residues spread across the receptor, whereas fewer structural regions of the receptor contributed to β-arrestin coupling regulation. Residue stretches in transmembrane domain 4 conferred β-arrestin bias and represented an important structural element in AT1R for functional selectivity. Furthermore, we identified allosteric small-molecule binding sites that were enclosed by communities of residues that produced biased signaling when mutated. Last, we showed that allosteric communication within AT1R emanating from the Gα coupling site spread beyond the orthosteric AngII-binding site and across different regions of the receptor, including currently unresolved structural regions. Our findings reveal structural elements and mechanisms within AT1R that bias Gα and β-arrestin coupling and that could be harnessed to design biased receptors for research purposes and to develop allosteric modulators.

摘要

G 蛋白偶联受体与 G 蛋白和β-arrestin 结合,其配体和突变可使其偶联偏向化。在这里,为了解决效应器与血管紧张素 II (AngII) 1 型受体 (AT1R) 偶联的结构元件和机制,我们结合了受体整个序列的丙氨酸扫描突变与 Gα 和β-arrestin 与突变受体的结合以及分子动力学模拟的药理学分析。我们表明,Gα 与 AT1R 的偶联涉及受体上分布的大量残基,而受体的较少结构区域有助于β-arrestin 偶联调节。跨膜域 4 中的残基延伸赋予了β-arrestin 偏向性,并且是 AT1R 中功能性选择性的重要结构元件。此外,我们确定了变构小分子结合位点,这些位点被产生偏向信号的残基社区包围。最后,我们表明,源自 Gα 偶联位点的 AT1R 内的变构通讯不仅在 AT1R 的变构 AngII 结合位点之外传播,而且跨越了受体的不同区域,包括目前尚未解决的结构区域。我们的发现揭示了 AT1R 内偏向 Gα 和β-arrestin 偶联的结构元件和机制,这些元件和机制可用于设计用于研究目的的偏向性受体,并开发变构调节剂。

相似文献

1
Unraveling allostery within the angiotensin II type 1 receptor for Gα and β-arrestin coupling.
Sci Signal. 2023 Aug 8;16(797):eadf2173. doi: 10.1126/scisignal.adf2173.
2
Loss of biased signaling at a G protein-coupled receptor in overexpressed systems.
PLoS One. 2023 Mar 24;18(3):e0283477. doi: 10.1371/journal.pone.0283477. eCollection 2023.
4
Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch.
J Biol Chem. 2014 Oct 10;289(41):28271-83. doi: 10.1074/jbc.M114.585067. Epub 2014 Aug 28.
5
Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation.
J Biol Chem. 2020 Sep 18;295(38):13169-13180. doi: 10.1074/jbc.RA120.014330. Epub 2020 Jul 23.
6
Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gα coupling.
J Cell Biochem. 2018 Apr;119(4):3586-3597. doi: 10.1002/jcb.26552. Epub 2018 Jan 4.
7
Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor.
J Biol Chem. 2019 Nov 15;294(46):17409-17420. doi: 10.1074/jbc.RA119.010324. Epub 2019 Sep 17.
8
Angiotensin type 1A receptor regulates β-arrestin binding of the β-adrenergic receptor via heterodimerization.
Mol Cell Endocrinol. 2017 Feb 15;442:113-124. doi: 10.1016/j.mce.2016.11.027. Epub 2016 Nov 28.
9
Biased agonists differentially modulate the receptor conformation ensembles in Angiotensin II type 1 receptor.
J Mol Graph Model. 2023 Jan;118:108365. doi: 10.1016/j.jmgm.2022.108365. Epub 2022 Oct 20.

引用本文的文献

3
Multiple intramolecular triggers converge to preferential G protein coupling in the CBR.
Nat Commun. 2025 Jun 11;16(1):5265. doi: 10.1038/s41467-025-60003-0.
4
Allosteric communication mechanism in the glucagon receptor.
J Biol Chem. 2025 Apr 23;301(6):108530. doi: 10.1016/j.jbc.2025.108530.
5
Sturge-Weber syndrome: updates in translational neurology.
Front Neurol. 2024 Dec 2;15:1493873. doi: 10.3389/fneur.2024.1493873. eCollection 2024.
6
BaNDyT: Bayesian Network modeling of molecular Dynamics Trajectories.
bioRxiv. 2024 Nov 8:2024.11.06.622318. doi: 10.1101/2024.11.06.622318.
7
Location-biased β-arrestin conformations direct GPCR signaling.
bioRxiv. 2024 Sep 26:2024.09.24.614742. doi: 10.1101/2024.09.24.614742.
8
Nanobody-Mediated Dualsteric Engagement of the Angiotensin Receptor Broadens Biased Ligand Pharmacology.
Mol Pharmacol. 2024 Feb 15;105(3):260-271. doi: 10.1124/molpharm.123.000797.
10
Ligand recognition and G-protein coupling of trace amine receptor TAAR1.
Nature. 2023 Dec;624(7992):672-681. doi: 10.1038/s41586-023-06804-z. Epub 2023 Nov 7.

本文引用的文献

1
Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists.
EMBO J. 2023 Jun 1;42(11):e112940. doi: 10.15252/embj.2022112940. Epub 2023 Apr 11.
3
Pathophysiology and pharmacology of G protein-coupled receptors in the heart.
Cardiovasc Res. 2023 May 22;119(5):1117-1129. doi: 10.1093/cvr/cvac171.
4
Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity.
Nat Commun. 2022 Dec 2;13(1):7428. doi: 10.1038/s41467-022-34055-5.
5
Prostaglandin F2α and angiotensin II type 1 receptors exhibit differential cognate G protein coupling regulation.
J Biol Chem. 2022 Sep;298(9):102294. doi: 10.1016/j.jbc.2022.102294. Epub 2022 Jul 21.
9
Sequence coevolution and structure stabilization modulate olfactory receptor expression.
Biophys J. 2022 Mar 1;121(5):830-840. doi: 10.1016/j.bpj.2022.01.015. Epub 2022 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验